期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Application of PID Controller Based on BP Neural Network in Export Steam’s Temperature Control System 被引量:4
1
作者 朱增辉 孙慧影 《Journal of Measurement Science and Instrumentation》 CAS 2011年第1期84-87,共4页
By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power pla... By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power plant is put forward. This scheme can effectively overcome the large time delay, inertia of the export steam and the influencee of object in varying operational parameters. Thus excellent control quality is obtaitud. The present paper describes the development and application of neural network based controller to control the temperature of the boiler's export steam. Through simulation in various situations, it validates that the control quality of this control system is apparently superior to the conventional PID control system. 展开更多
关键词 pid controller based on BP neural network supercritical power unit export steam temperature large timedelay
下载PDF
Adaptive Server Load Balancing in SDN Using PID Neural Network Controller
2
作者 R.Malavika M.L.Valarmathi 《Computer Systems Science & Engineering》 SCIE EI 2022年第7期229-243,共15页
Web service applications are increasing tremendously in support of high-level businesses.There must be a need of better server load balancing mechanism for improving the performance of web services in business.Though ... Web service applications are increasing tremendously in support of high-level businesses.There must be a need of better server load balancing mechanism for improving the performance of web services in business.Though many load balancing methods exist,there is still a need for sophisticated load bal-ancing mechanism for not letting the clients to get frustrated.In this work,the ser-ver with minimum response time and the server having less traffic volume were selected for the aimed server to process the forthcoming requests.The Servers are probed with adaptive control of time with two thresholds L and U to indicate the status of server load in terms of response time difference as low,medium and high load by the load balancing application.Fetching the real time responses of entire servers in the server farm is a key component of this intelligent Load balancing system.Many Load Balancing schemes are based on the graded thresholds,because the exact information about the networkflux is difficult to obtain.Using two thresholds L and U,it is possible to indicate the load on particular server as low,medium or high depending on the Maximum response time difference of the servers present in the server farm which is below L,between L and U or above U respectively.However,the existing works of load balancing in the server farm incorporatefixed time to measure real time response time,which in general are not optimal for all traffic conditions.Therefore,an algorithm based on Propor-tional Integration and Derivative neural network controller was designed with two thresholds for tuning the timing to probe the server for near optimal perfor-mance.The emulation results has shown a significant gain in the performance by tuning the threshold time.In addition to that,tuning algorithm is implemented in conjunction with Load Balancing scheme which does not tune thefixed time slots. 展开更多
关键词 Software defined networks pid neural network controller closed loop control theory server load balancing server response time
下载PDF
NEW HYDRAULIC ACTUATOR'S POSITION SERVOCONTROL STRATEGY 被引量:3
3
作者 KE Zunrong ZHU Yuquan LING Xuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期46-53,共8页
A new hydraulic actuator-hydraulic muscle (HM) is described, and the actuator's features and applications are analyzed, then a position servocontrol system in which HM is main actuator is set up. The mathematical m... A new hydraulic actuator-hydraulic muscle (HM) is described, and the actuator's features and applications are analyzed, then a position servocontrol system in which HM is main actuator is set up. The mathematical model of the system is built up and several control strategies are discussed. Based on the mathematical model, simulation research and experimental investigation with subsection PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control adopted respectively are carried out, and the results indicate that compared with PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control don't need controlled system's accurate model and have fast response, high control accuracy and strong robustness, they are very suitable for HM position servo control system. 展开更多
关键词 Hydraulic muscle (HM) Position servocontrol Control strategies Subsection pid control neural network self-adaptive pid control Single neuron self-adaptive pid control
下载PDF
A Study of Maneuvering Control for an Air Cushion Vehicle Based on Back Propagation Neural Network 被引量:5
4
作者 卢军 黄国樑 李姝芝 《Journal of Shanghai Jiaotong university(Science)》 EI 2009年第4期482-485,共4页
A back propagation (BP) neural network mathematical model was established to investigate the maneuvering control of an air cushion vehicle (ACV). The calculation was based on four-freedom-degree model experiments ... A back propagation (BP) neural network mathematical model was established to investigate the maneuvering control of an air cushion vehicle (ACV). The calculation was based on four-freedom-degree model experiments of hydrodynamics and aerodynamics. It is necessary for the ACV to control the velocity and the yaw rate as well as the velocity angle at the same time. The yaw rate and the velocity angle must be controlled correspondingly because of the whipping, which is a special characteristic for the ACV. The calculation results show that it is an efficient way for the ACV's maneuvering control by using a BP neural network to adjust PID parameters online. 展开更多
关键词 air cushion vehicle four degree of freedom back propagation (BP) neural network. pid control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部