期刊文献+
共找到120篇文章
< 1 2 6 >
每页显示 20 50 100
HYPERSTATIC STRUCTURE MAPPING MODEL BUILDING AND OPTIMIZING DESIGN 被引量:2
1
作者 XU Gening GAO Youshan +1 位作者 ZHANG Xueliang YANG Ruigang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第1期55-59,共5页
Hyperstatic structure plane model being built by structural mechanics is studied. Space model precisely reflected in real stress of the structure is built by finite element method (FEM) analysis commerce software. M... Hyperstatic structure plane model being built by structural mechanics is studied. Space model precisely reflected in real stress of the structure is built by finite element method (FEM) analysis commerce software. Mapping model of complex structure system is set up, with convenient calculation just as in plane model and comprehensive information as in space model. Plane model and space model are calculated under the same working condition. Plane model modular construction inner force is considered as input data; Space model modular construction inner force is considered as output data. Thus specimen is built on input data and output dam. Character and affiliation are extracted through training specimen, with the employment of nonlinear mapping capability of the artificial neural network. Mapping model with interpolation and extrpolation is gained, laying the foundation for optimum design. The steel structure of high-layer parking system (SSHLPS) is calculated as an instance. A three-layer back-propagation (BP) net including one hidden layer is constructed with nine input nodes and eight output nodes for a five-layer SSHLPS. The three-layer structure optimization result through the mapping model interpolation contrasts with integrity re-analysis, and seven layers structure through the mapping model extrpulation contrasts with integrity re-analysis. Any layer SSHLPS among 1-8 can be calculated with much accuracy. Amount of calculation can also be reduced if it is appfied into the same topological structure, with reduced distortion and assured precision. 展开更多
关键词 Plane model - Space model Artificial neural networks Mapping model Optimum design
下载PDF
Physics-constrained graph modeling for building thermal dynamics
2
作者 Ziyao Yang Amol D.Gaidhane +4 位作者 Ján Drgoňa Vikas Chandan Mahantesh M.Halappanavar Frank Liu Yu Cao 《Energy and AI》 EI 2024年第2期150-157,共8页
In this paper,we propose a graph model embedded with compact physical equations for modeling the thermal dynamics of buildings.The principles of heat flow across various components in the building,such as walls and do... In this paper,we propose a graph model embedded with compact physical equations for modeling the thermal dynamics of buildings.The principles of heat flow across various components in the building,such as walls and doors,fit the message-passing strategy used by Graph Neural networks(GNNs).The proposed method is to represent the multi-zone building as a graph,in which only zones are considered as nodes,and any heat flow between zones is modeled as an edge based on prior knowledge of the building structure.Furthermore,the thermal dynamics of these components are described by compact models in the graph.GNNs are further employed to train model parameters from collected data.During model training,our proposed method enforces physical constraints(e.g.,zone sizes and connections)on model parameters and propagates the penalty in the loss function of GNN.Such constraints are essential to ensure model robustness and interpretability.We evaluate the effectiveness of the proposed modeling approach on a realistic dataset with multiple zones.The results demonstrate a satisfactory accuracy in the prediction of multi-zone temperature.Moreover,we illustrate that the new model can reliably learn hidden physical parameters with incomplete data. 展开更多
关键词 Physics-constrained learning Graph neural networks Compact model building thermal dynamics
原文传递
基于U-Net网络模型方法的山区高分辨率遥感影像建筑物提取研究
3
作者 黄德伦 易珍言 廉琦 《测绘标准化》 2024年第3期43-49,共7页
由于山区地形较为复杂且自然环境多变,建筑物的布局不会像在平原地区呈网络状规则分布,导致山区建筑物的提取存在碎斑、范围不正确等问题。本文基于北京二号(BJ-2)和高分七号(GF-7)遥感卫星影像,采用U-Net网络模型对山区建筑物进行提取... 由于山区地形较为复杂且自然环境多变,建筑物的布局不会像在平原地区呈网络状规则分布,导致山区建筑物的提取存在碎斑、范围不正确等问题。本文基于北京二号(BJ-2)和高分七号(GF-7)遥感卫星影像,采用U-Net网络模型对山区建筑物进行提取试验,并将试验数据与第三次全国国土调查成果进行比对分析。研究结果表明,采用本文方法提取的建筑物精度高,将U-Net网络模型用于山区建筑物提取的方法可行。 展开更多
关键词 高分辨率遥感影像 U-Net网络模型 建筑物提取
下载PDF
SSA-Elman神经网络模型在建筑物沉降预测中的应用
4
作者 兰丽景 陈晓婷 毛洪孝 《测绘与空间地理信息》 2024年第4期203-206,共4页
为了提高建筑物沉降变形预测精度,最大限度地减少监测数据中非变形噪声分量对预测结果的影响,本文在Elman神经网络模型的基础上引入奇异谱分析方法,构建新的SSA-Elman神经网络模型。首先利用SSA方法提取沉降监测数据中的趋势分量与周期... 为了提高建筑物沉降变形预测精度,最大限度地减少监测数据中非变形噪声分量对预测结果的影响,本文在Elman神经网络模型的基础上引入奇异谱分析方法,构建新的SSA-Elman神经网络模型。首先利用SSA方法提取沉降监测数据中的趋势分量与周期分量,剔除噪声分量,提高监测数据信噪比;其次通过Elman神经网络模型分别对趋势分量、周期分量进行预测,得到对应分量预测结果;最后重构趋势分量与周期分量预测结果得到最终预测结果。通过实测建筑物沉降数据分别对Elman神经网络模型与SSA-Elman神经网络模型进行建模与预测,结果表明,SSA-Elman神经网络模型的预测精度更高,更适应长周期预测。 展开更多
关键词 Elman神经网络模型 奇异谱分析 建筑物 沉降预测 去噪
下载PDF
A New Searching Strategy for the Lost Plane Based on RBF Neural Network Model and Global Optimization Model
5
作者 Yiqing YU 《International Journal of Technology Management》 2015年第4期126-128,共3页
In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF n... In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF neural network model, and then determine the searching area according to the trajectory. With the pass of time, the searching area will also be constantly moving along the trajectory. Model 2 develops a maritime search plan to achieve the purpose of completing the search in the shortest time. We optimize the searching time and transform the problem into the 0-1 knapsack problem. Solving this problem by improved genetic algorithm, we can get the shortest searching time and the best choice for the search power. 展开更多
关键词 the trajectory of floats RBF neural network model Global optimization model 0-1 knapsack problem improved geneticalgorithm
下载PDF
Identifying the validity domain of machine learning models in building energy systems
6
作者 Martin Rätz Patrick Henkel +2 位作者 Phillip Stoffel Rita Streblow Dirk Müller 《Energy and AI》 EI 2024年第1期328-341,共14页
The building sector significantly contributes to climate change.To improve its carbon footprint,applications like model predictive control and predictive maintenance rely on system models.However,the high modeling eff... The building sector significantly contributes to climate change.To improve its carbon footprint,applications like model predictive control and predictive maintenance rely on system models.However,the high modeling effort hinders practical application.Machine learning models can significantly reduce this modeling effort.To ensure a machine learning model’s reliability in all operating states,it is essential to know its validity domain.Operating states outside the validity domain might lead to extrapolation,resulting in unpredictable behavior.This paper addresses the challenge of identifying extrapolation in data-driven building energy system models and aims to raise knowledge about it.For that,a novel approach is proposed that calibrates novelty detection algorithms towards the machine learning model.Suitable novelty detection algorithms are identified through a literature review and a benchmark test with 15 candidates.A subset of five algorithms is then evaluated on building energy systems.First,on two-dimensional data,displaying the results with a novel visualization scheme.Then on more complex multi-dimensional use cases.The methodology performs well,and the validity domain could be approximated.The visualization allows for a profound analysis and an improved understanding of the fundamental effects behind a machine learning model’s validity domain and the extrapolation regimes. 展开更多
关键词 Extrapolation detection Validity domain Novelty detection Machine learning Artificial neural network Data-driven model predictive control building energy systems
原文传递
An Interactive platform for low-cost 3D building modeling from VGI data using convolutional neural network 被引量:1
7
作者 Hongchao Fan Gefei Kong Chaoquan Zhang 《Big Earth Data》 EI 2021年第1期49-65,共17页
The applications of 3D building models are limited as producing them requires massive labor and time costs as well as expensive devices.In this paper,we aim to propose a novel and web-based interactive platform,VGI3D,... The applications of 3D building models are limited as producing them requires massive labor and time costs as well as expensive devices.In this paper,we aim to propose a novel and web-based interactive platform,VGI3D,to overcome these challenges.The platform is designed to reconstruct 3D building models by using free images from internet users or volunteered geographic informa-tion(VGI)platform,even though not all these images are of high quality.Our interactive platform can effectively obtain each 3D building model from images in 30 seconds,with the help of user interaction module and convolutional neural network(CNN).The user interaction module provides the boundary of building facades for 3D building modeling.And this CNN can detect facade elements even though multiple architectural styles and complex scenes are within the images.Moreover,user interaction module is designed as simple as possible to make it easier to use for both of expert and non-expert users.Meanwhile,we conducted a usability testing and collected feedback from participants to better optimize platform and user experience.In general,the usage of VGI data reduces labor and device costs,and CNN simplifies the process of elements extraction in 3D building modeling.Hence,our proposed platform offers a promising solution to the 3D modeling community. 展开更多
关键词 3D building modeling VGI convolutional neural network user interaction low cost
原文传递
Multimodality image registration and fusion using neural network
8
作者 Mostafa G Mostafa Aly A Farag Edward Essock 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第3期235-240,共6页
Multimodality image registration and fusion are essential steps in building 3-D models from remotesensing data. We present in this paper a neural network technique for the registration and fusion of multimodali-ty rem... Multimodality image registration and fusion are essential steps in building 3-D models from remotesensing data. We present in this paper a neural network technique for the registration and fusion of multimodali-ty remote sensing data for the reconstruction of 3-D models of terrain regions. A FeedForward neural network isused to fuse the intensity data sets with the spatial data set after learning its geometry. Results on real data arepresented. Human performance evaluation is assessed on several perceptual tests in order to evaluate the fusionresults. 展开更多
关键词 data fusion image registration image interpolation neural network 3-D model building
下载PDF
基于粗糙集和PSO-Elman的商业建筑空调冷负荷预测 被引量:3
9
作者 李宗霖 雷蕾 郭雪松 《流体机械》 CSCD 北大核心 2023年第6期53-59,共7页
为了精确预测商业建筑空调的冷负荷,建立基于粗糙集和PSO-Elman神经网络的预测模型。首先利用粗糙集对空调冷负荷的影响因子进行属性约简,然后应用粒子群算法优化Elman神经网络的权值和阈值,建立PSO-Elman商业建筑空调冷负荷的预测模型... 为了精确预测商业建筑空调的冷负荷,建立基于粗糙集和PSO-Elman神经网络的预测模型。首先利用粗糙集对空调冷负荷的影响因子进行属性约简,然后应用粒子群算法优化Elman神经网络的权值和阈值,建立PSO-Elman商业建筑空调冷负荷的预测模型。采集桂林某商业建筑的空调数据和气象参数验证PSO-Elman预测模型的预测性能,并将该模型的预测结果与Elman预测模型的预测结果进行对比分析。研究结果表明,PSO-Elman预测模型的预测精度高于Elman预测模型,PSO-Elman预测模型预测结果的平均绝对相对误差、均方根相对误差、均方根误差和平均绝对误差分别为4.87%,6.15%,423.71和335.86,与Elman预测模型的预测结果相比,这些误差参数分别降低了2.46%,2.46%,169.65和156.57。由此可知,PSO-Elman预测模型能够精确有效地预测商业建筑空调的冷负荷。 展开更多
关键词 商业建筑空调 冷负荷 粗糙集 PSO-Elman神经网络 预测模型
下载PDF
基于SSA-BP神经网络的试验品室内温度预测 被引量:4
10
作者 孙冲 刘沛然 伊猛 《现代电子技术》 2023年第4期171-176,共6页
在弹药试验品日常存储温度监测过程中,传统传感器测量存在滞后性。为解决这一问题并实现试验品储存室下一时刻温度的精准预测,文中提出一种基于SSA优化BP神经网络的智能算法。通过SSA算法与BP神经网络相结合的方法,在局部搜索中快速找... 在弹药试验品日常存储温度监测过程中,传统传感器测量存在滞后性。为解决这一问题并实现试验品储存室下一时刻温度的精准预测,文中提出一种基于SSA优化BP神经网络的智能算法。通过SSA算法与BP神经网络相结合的方法,在局部搜索中快速找出阈值更新的最优位置,为BP神经网络的训练提供更好的参数。利用Matlab仿真平台搭建SSABP温度预测模型,并与PSO-BP算法温度预测模型进行仿真对比。测试结果表明:SSA-BP神经网络算法稳定性好,鲁棒性强,收敛速度快;相比PSO-BP网络,该算法的MAE和MSE误差值分别减少2.31%和0.54%,预测精准度高。所提方法可为弹药试验品储存室温度精准预测提供重要依据和参考。 展开更多
关键词 SSA算法 PSO算法 BP神经网络 弹药存储 温度预测 模型搭建 仿真验证
下载PDF
以改进机器视觉算法构建纸张图像识别模型
11
作者 牟海荣 陆蕊 《造纸科学与技术》 2024年第2期60-62,81,共4页
为保障纸张生产加工质量,精准获取与识别纸张缺陷,以改进机器视觉算法构建了纸张图像识别模型。首先以由线阵CCD相机与双光源等构成的图像采集装备采集纸张缺陷图像,其次以改进机器视觉方法对纸张缺陷图像进行预处理分析,然后将预处理... 为保障纸张生产加工质量,精准获取与识别纸张缺陷,以改进机器视觉算法构建了纸张图像识别模型。首先以由线阵CCD相机与双光源等构成的图像采集装备采集纸张缺陷图像,其次以改进机器视觉方法对纸张缺陷图像进行预处理分析,然后将预处理后图案以可变形卷积神经网络输入进行训练,以此检测识别纸张所存在的缺陷类型。实验测试结果表明,基于改进机器视觉算法的纸张图像识别模型可高效且精准识别缺陷,准确率高达98.4%,拥有较高识别度,可广泛推广以投入实际运用。 展开更多
关键词 机器视觉 可变形卷积神经网络 纸张缺陷 图像识别 模型构建
下载PDF
基于人工神经网络模型的碳排放预测研究进展 被引量:1
12
作者 谭川江 王超 +2 位作者 常昊 杜若岚 任宏洋 《天然气与石油》 2024年第1期124-132,共9页
碳排放是一个受多因素交互作用的动态过程,准确预测碳排放量有利于碳减排措施的制定。由于碳排放本身模型具有动态变化性、非线性、社会性等特点,传统预测方法不能满足实际情况的需要。人工神经网络模型能够较好地描述碳排放时间系列数... 碳排放是一个受多因素交互作用的动态过程,准确预测碳排放量有利于碳减排措施的制定。由于碳排放本身模型具有动态变化性、非线性、社会性等特点,传统预测方法不能满足实际情况的需要。人工神经网络模型能够较好地描述碳排放时间系列数据的非线性特性,被广泛应用于预测国家、区域、行业等层面的碳排放量变化。其中,误差反向传播(Back Propagation,BP)神经网络模型和长短期记忆(Long Short-Term Memory,LSTM)神经网络模型备受关注。在模型预测过程中,通过识别目标模型的碳排放影响因素类型、提高输入层数据的准确性、构建适宜的线性—非线性耦合的组合模型等途径,进一步提高模型预测的准确性。研究结果对人工神经网络模型在碳排放预测中的应用情况进行梳理,为碳排放预测技术的进一步发展提供参考。 展开更多
关键词 碳排放预测 人工神经网络 模型构建 优化
下载PDF
基于GM-RBF神经网络的高校建筑能耗预测 被引量:26
13
作者 赵超 林思铭 许巧玲 《南京理工大学学报》 EI CAS CSCD 北大核心 2014年第1期48-53,共6页
为了提高高校建筑的能耗预测精度,在比较传统灰色预测模型和神经网络预测模型优缺点的基础上,建立了灰色径向基函数(Radical basis function,RBF)神经网络能耗预测算法。该方法综合了灰色系统理论所需数据少以及神经网络自学习和自组织... 为了提高高校建筑的能耗预测精度,在比较传统灰色预测模型和神经网络预测模型优缺点的基础上,建立了灰色径向基函数(Radical basis function,RBF)神经网络能耗预测算法。该方法综合了灰色系统理论所需数据少以及神经网络自学习和自组织的优点。实例分析表明:与传统灰色理论和RBF神经网络预测模型相比较,组合模型预测值与实际值的相对误差平均降低了5.4%,为建筑节能评估和设计提供了决策依据。 展开更多
关键词 高校建筑 能耗预测 灰色理论 径向基函数神经网络 组合模型
下载PDF
基于卷积神经网络的福建省区域滑坡灾害预警模型 被引量:2
14
作者 董力豪 刘艳辉 +1 位作者 黄俊宝 刘海宁 《水文地质工程地质》 CSCD 北大核心 2024年第1期145-153,共9页
福建省滑坡灾害频发,开展区域尺度上的滑坡灾害预警是防灾减灾的重要手段,但由于滑坡成灾机理复杂,传统的区域滑坡预警方法存在精度不足等问题。深度学习是指通过构建神经网络模型进行特征的提取、抽象、表示与学习的技术,是机器学习的... 福建省滑坡灾害频发,开展区域尺度上的滑坡灾害预警是防灾减灾的重要手段,但由于滑坡成灾机理复杂,传统的区域滑坡预警方法存在精度不足等问题。深度学习是指通过构建神经网络模型进行特征的提取、抽象、表示与学习的技术,是机器学习的一种。卷积神经网络作为一种经典的深度学习算法,具有比传统机器学习更强大的分类能力与表征能力。文章以福建省为研究区,将卷积神经网络引入滑坡灾害预警领域,构建福建省区域滑坡预警模型,过程及结果如下:(1)采用SMOTE优化算法对2010—2018年福建省滑坡灾害样本库进行优化,扩充正样本的个数,将正负样本比例从1∶3.4扩充到1∶2,样本总量达到18040个;(2)构建卷积神经网络模型结构,模型结构包括一个输入层、两个卷积层、两个最大池化层和一个全连接层以及一个输出层;(3)使用卷积神经网络对优化后的样本(2010—2018年样本的80%作为训练集)进行训练,并用贝叶斯优化算法优化模型超参数,得到福建省区域滑坡预警模型;(4)以2010—2018年样本的20%作为测试集对模型进行测试,采用混淆矩阵、ROC曲线进行模型测试,结果显示模型准确度为0.96~0.97,AUC值达到0.977,模型精度与泛化能力良好;(5)以2019年汛期滑坡灾害实况作为正样本,通过时空采样的方法采集负样本,构建2019年区域滑坡样本校验集(样本数603个),对模型进行进一步实况校验,采用混淆矩阵、ROC曲线进行模型校验,结果显示模型准确度为0.75~0.85,AUC值为0.852。虽然仅用了2019年汛期的滑坡实况样本进行校验,但也达到较好的效果。将卷积神经网络算法应用到区域滑坡预警中,为建立区域滑坡预警模型提供了一种新的途径,初步校验表明,模型效果良好,今后将在福建省对模型进行进一步的应用与校验。 展开更多
关键词 滑坡灾害 预警模型 深度学习 卷积神经网络 模型构建
下载PDF
基于GM-BP神经网络的校园建筑能耗预测 被引量:5
15
作者 李明海 赵明强 +1 位作者 刘敏 王天豪 《建筑节能》 CAS 2016年第11期80-83,共4页
针对季节更迭、教学活动等因素对校园公共建筑能耗的影响,通过建立GM-BP神经网络组合预测模型,借助MATLAB软件完成建模和仿真环节,对建筑能耗开展预测分析研究。同时,引入最大相对误差绝对值Emax、平均相对误差Eave和均方根误差RMSE 3... 针对季节更迭、教学活动等因素对校园公共建筑能耗的影响,通过建立GM-BP神经网络组合预测模型,借助MATLAB软件完成建模和仿真环节,对建筑能耗开展预测分析研究。同时,引入最大相对误差绝对值Emax、平均相对误差Eave和均方根误差RMSE 3个性能指标对各预测模型性能进行评价。结果表明,组合模型较单一的GM(1,1)模型和BP神经网络模型预测精度更高,拟合性能更好。研究成果对能源管理部门制定用能政策及科研院校从事建筑节能研究具有一定的借鉴意义。 展开更多
关键词 GM-BP组合模型 GM(1 1)模型 BP神经网络 能耗预测 建筑节能
下载PDF
基于PCA-BP神经网络的大型公共建筑能耗预测 被引量:4
16
作者 李明海 刘敏 赵明强 《现代建筑电气》 2016年第4期5-9,共5页
针对大型公共建筑高能耗问题,提出了主成分分析(PCA)与BP神经网络相结合的大型公共建筑能耗预测模型。基于时间序列对历史逐日耗电量进行相关性分析,提取预测点前三天的逐日耗电量,并与前一天日照、温度、相对湿度、风速的平均值进行主... 针对大型公共建筑高能耗问题,提出了主成分分析(PCA)与BP神经网络相结合的大型公共建筑能耗预测模型。基于时间序列对历史逐日耗电量进行相关性分析,提取预测点前三天的逐日耗电量,并与前一天日照、温度、相对湿度、风速的平均值进行主成分的浓缩,然后将其作为BP神经网络的输入,从而降低输入变量的维数,简化网络结构。结果表明,较传统的BP网络,大型公共建筑能耗预测模型具有较高的精度和更短的学习时间,但当预测样品数增加时预测误差逐渐增大。 展开更多
关键词 大型公共建筑 时间序列 主成分分析 BP神经网络 预测模型
下载PDF
ARIMA-BP复合模型在建筑能耗预测中的应用研究 被引量:2
17
作者 海涛 曹先省 +3 位作者 赵羿 周楠皓 马昭健 周明雨 《广西科技大学学报》 2018年第3期30-36,共7页
建筑的能耗受到如季节、建筑的构造结构等多种因素的影响,目前对一栋建筑楼实现能耗预测往往采用单一模型,往往无法得到相对准确的结果.为了更好地描述建筑能耗规律,以南方某地为研究区域提出一种基于ARIMA和BP神经网络的复合模型,模型... 建筑的能耗受到如季节、建筑的构造结构等多种因素的影响,目前对一栋建筑楼实现能耗预测往往采用单一模型,往往无法得到相对准确的结果.为了更好地描述建筑能耗规律,以南方某地为研究区域提出一种基于ARIMA和BP神经网络的复合模型,模型的实例数据来源为南方某地某市政办公楼近两年的能耗月数据.首先,通过ARIMA建模得到能耗值的拟合误差序列,再用BP模型修正误差值得到最终预测值.结果表明:复合预测模型的平均相对误差为0.278 3%,而单一模型则高达2.657 8%,复合模型的预测效果远优于单一模型,为准确实现建筑节能提出了一种新思路. 展开更多
关键词 建筑能耗预测 BP神经网络 ARIMA 复合模型
下载PDF
基于BP神经网络的落叶松树冠体积及表面积模型构建
18
作者 周来 程小芳 张梦弢 《北京林业大学学报》 CAS CSCD 北大核心 2024年第8期94-100,共7页
【目的】应用BP神经网络模型预测华北落叶松树冠体积与表面积,探索华北落叶松树冠体积与表面积估算模型的最优形式,为未来的预测模式提供新思路。【方法】以山西省庞泉沟自然保护区的华北落叶松林为研究对象,通过从6块(60 m×60 m)... 【目的】应用BP神经网络模型预测华北落叶松树冠体积与表面积,探索华北落叶松树冠体积与表面积估算模型的最优形式,为未来的预测模式提供新思路。【方法】以山西省庞泉沟自然保护区的华北落叶松林为研究对象,通过从6块(60 m×60 m)固定样地得到的678个观测数据,运用BP神经网络,分别对华北落叶松树冠体积与表面积建立模型,通过对模型的训练,得到基于BP神经网络的华北落叶松树冠体积和表面积估算模型。【结果】基于BP神经网络的华北落叶松树冠体积与表面积模型的最优结构模型的输入层节点数∶隐层节点数∶输出层节点数=6∶9∶1。其中树冠体积的决定系数(R^(2))、平均绝对误差(MAE)和均方根误差(RMSE)分别为0.948、5.40 m^(3)、18.40;表面积的R^(2)、MAE和RMSE分别为0.957、3.33 m^(2)、 14.41。基于BP神经网络的华北落叶松树冠体积与表面积模型的性能与输入因子的数量呈正相关,最优模型的输入因子数为6个,分别为冠幅、树高、胸径、最大冠幅高度、第一活枝长(在垂直于树干方向上的投影长度)和冠基高。【结论】输入变量包含树干尺寸和树冠构型特征相关信息,模型能较好地实现华北落叶松树冠体积和表面积的预测。 展开更多
关键词 模型构建 树冠体积与表面积 BP神经网络 机器学习 预测模型 华北落叶松
下载PDF
Safe operation of online learning data driven model predictive control of building energy systems 被引量:1
19
作者 Phillip Stoffel Patrick Henkel +2 位作者 Martin Ratz Alexander Kumpel Dirk Muller 《Energy and AI》 2023年第4期536-549,共14页
Model predictive control is a promising approach to reduce the CO 2 emissions in the building sector.However,the vast modeling effort hampers the widescale practical application.Here,data-driven process models,like ar... Model predictive control is a promising approach to reduce the CO 2 emissions in the building sector.However,the vast modeling effort hampers the widescale practical application.Here,data-driven process models,like artificial neural networks,are well-suited to automatize the modeling.However,the underlying data set strongly determines the quality and reliability of artificial neural networks.In general,the validity domain of a machine learning model is limited to the data that was used to train it.Predictions based on system states outside that domain,so-called extrapolations,are unreliable and can negatively influence the control quality.We present a safe operation approach combined with online learning to deal with extrapolation in data-driven model predictive control.Here,the k-nearest neighbor algorithm is used to detect extrapolation to switch to a robust fallback controller.By continuously retraining the artificial neural networks during operation,we successively increase the validity domain of the artificial neural networks and the control quality.We apply the approach to control a building energy system provided by the BOPTEST framework.We compare controllers based on two data sets,one with extensive system excitation and one with baseline operation.The system is controlled to a fixed temperature set point in baseline operation.Therefore,the artificial neural networks trained on this data set tend to extrapolate in other operating points.We show that safe operation in combination with online learning significantly improves performance. 展开更多
关键词 Data-driven model predictive control Online learning Novelty detection Artificial neural networks building energy systems
原文传递
基于BP神经网络的公共建筑工程造价预测研究
20
作者 陈懂娟 《科技创新与应用》 2024年第18期153-156,共4页
公共建筑工程造价预测是项目可行性分析的重要依据,是比选设计方案的关键参照,因此,造价预测结果的精准度及时效性对工程项目投资决策具有重要影响。为解决传统造价预测方法误差大、时效性差的弊端,该文提出基于BP神经网络的公共建筑工... 公共建筑工程造价预测是项目可行性分析的重要依据,是比选设计方案的关键参照,因此,造价预测结果的精准度及时效性对工程项目投资决策具有重要影响。为解决传统造价预测方法误差大、时效性差的弊端,该文提出基于BP神经网络的公共建筑工程造价快速预测方法,分析公共建筑工程造价预测的影响因子,介绍BP神经网络预测造价原理及可行性,给出BP神经网络预测模型的构建方法,并对BP神经网络预测造价模型的应用效果进行仿真分析。经过模型仿真分析与评价,证实BP神经网络在公共建筑工程造价预测方面具有良好优势,比传统造价预测方法的预测结果更加精准与快速。 展开更多
关键词 BP神经网络 公共建筑 工程造价 造价预测 预测模型
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部