期刊文献+
共找到9,693篇文章
< 1 2 250 >
每页显示 20 50 100
Soft measurement model of ring's dimensions for vertical hot ring rolling process using neural networks optimized by genetic algorithm 被引量:2
1
作者 汪小凯 华林 +3 位作者 汪晓旋 梅雪松 朱乾浩 戴玉同 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期17-29,共13页
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri... Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process. 展开更多
关键词 vertical hot ring rolling dimension precision soft measurement model artificial neural network genetic algorithm
下载PDF
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
2
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
下载PDF
Elevator Group-Control Policy Based on Neural Network Optimized by Genetic Algorithm 被引量:1
3
作者 沈虹 万健如 +2 位作者 张志超 刘英培 李光叶 《Transactions of Tianjin University》 EI CAS 2009年第4期245-248,共4页
Aiming at the diversity and nonlinearity of the elevator system control target, an effective group method based on a hybrid algorithm of genetic algorithm and neural network is presented in this paper. The genetic alg... Aiming at the diversity and nonlinearity of the elevator system control target, an effective group method based on a hybrid algorithm of genetic algorithm and neural network is presented in this paper. The genetic algorithm is used to search the weight of the neural network. At the same time, the multi-objective-based evaluation function is adopted, in which there are three main indicators including the passenger waiting time, car passengers number and the number of stops. Different weights are given to meet the actual needs. The optimal values of the evaluation function are obtained, and the optimal dispatch control of the elevator group control system based on neural network is realized. By analyzing the running of the elevator group control system, all the processes and steps are presented. The validity of the hybrid algorithm is verified by the dynamic imitation performance. 展开更多
关键词 elevator group control genetic algorithm neural network hybrid algorithm
下载PDF
Optimizing neural networks by genetic algorithms for predicting particulate matter concentration in summer in Beijing 被引量:1
4
作者 王芳 《Journal of Chongqing University》 CAS 2010年第3期117-123,共7页
We developed and tested an improved neural network to predict the average concentration of PM10(particulate matter with diameter smaller than 10 ?m) several hours in advance in summer in Beijing.A genetic algorithm op... We developed and tested an improved neural network to predict the average concentration of PM10(particulate matter with diameter smaller than 10 ?m) several hours in advance in summer in Beijing.A genetic algorithm optimization procedure for optimizing initial weights and thresholds of the neural network was also evaluated.This research was based upon the PM10 data from seven monitoring sites in Beijing urban region and meteorological observation data,which were recorded every 3 h during summer of 2002.Two neural network models were developed.Model I was built for predicting PM10 concentrations 3 h in advance while Model II for one day in advance.The predictions of both models were found to be consistent with observations.Percent errors in forecasting the numerical value were about 20.This brings us to the conclusion that short-term fluctuations of PM10 concentrations in Beijing urban region in summer are to a large extent driven by meteorological conditions.Moreover,the predicted results of Model II were compared with the ones provided by the Models-3 Community Multiscale Air Quality(CMAQ) modeling system.The mean relative errors of both models were 0.21 and 0.26,respectively.The performance of the neural network model was similar to numerical models,when applied to short-time prediction of PM10 concentration. 展开更多
关键词 PM10 concentration neural network genetic algorithm prediction
下载PDF
Evolving Neural Networks Using an Improved Genetic Algorithm 被引量:2
5
作者 温秀兰 宋爱国 +1 位作者 段江海 王一清 《Journal of Southeast University(English Edition)》 EI CAS 2002年第4期367-369,共3页
A novel real coded improved genetic algorithm (GA) of training feed forward neural network is proposed to realize nonlinear system forecast. The improved GA employs a generation alternation model based the minimal gen... A novel real coded improved genetic algorithm (GA) of training feed forward neural network is proposed to realize nonlinear system forecast. The improved GA employs a generation alternation model based the minimal generation gap (MGP) and blend crossover operators (BLX α). Compared with traditional GA implemented in binary number, the processing time of the improved GA is faster because coding and decoding are unnecessary. In addition, it needn t set parameters such as the probability value of crossove... 展开更多
关键词 genetic algorithms neural network nonlinear forecasting
下载PDF
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
6
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 Artificial neural network genetic algorithms Back propagation model (BP model) OPTIMIZATION
下载PDF
Optimized Phishing Detection with Recurrent Neural Network and Whale Optimizer Algorithm
7
作者 Brij Bhooshan Gupta Akshat Gaurav +3 位作者 Razaz Waheeb Attar Varsha Arya Ahmed Alhomoud Kwok Tai Chui 《Computers, Materials & Continua》 SCIE EI 2024年第9期4895-4916,共22页
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec... Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection. 展开更多
关键词 Phishing detection Recurrent neural Network(RNN) Whale Optimization algorithm(WOA) CYBERSECURITY machine learning optimization
下载PDF
Design of artificial neural networks using a genetic algorithm to predict saturates of vacuum gas oil 被引量:15
8
作者 Dong Xiucheng Wang Shouchun +1 位作者 Sun Renjin Zhao Suoqi 《Petroleum Science》 SCIE CAS CSCD 2010年第1期118-122,共5页
Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a... Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy. 展开更多
关键词 Saturates vacuum gas oil PREDICTION artificial neural networks genetic algorithm
下载PDF
Composite Structural Optimization by Genetic Algorithm and Neural Network Response Surface Modeling 被引量:13
9
作者 徐元铭 李烁 荣晓敏 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第4期310-316,共7页
Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to s... Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to select the most appropriate design samples for network training. The trained response surfaces can either be objective function or constraint conditions. Together with other conven- tional constraints, an optimization model is then set up and can be solved by Genetic Algorithm (GA). This allows the separation between design analysis modeling and optimization searching. Through an example of a hat-stiffened composite plate design, the weight response surface is constructed to be objective function, and strength and buckling response surfaces as constraints; and all of them are trained through NASTRAN finite element analysis. The results of optimization study illustrate that the cycles of structural analysis ean be remarkably reduced or even eliminated during the optimization, thus greatly raising the efficiency of optimization process. It also observed that NNRS approximation can achieve equal or even better accuracy than conventional functional response surfaces. 展开更多
关键词 neural network genetic algorithm response surface composite structural optimization
下载PDF
The Development of Highly Loaded Turbine Rotating Blades by Using 3D Optimization Design Method of Turbomachinery Blades Based on Artificial Neural Network & Genetic Algorithm 被引量:3
10
作者 周凡贞 冯国泰 蒋洪德 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2003年第4期198-202,共5页
In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic alg... In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic algorithm is adopted to construct the blade shape. The blade is stacked by the center of gravity in radial direction with five sections. For each blade section, independent suction and pressure sides are constructed from the camber line using Bezier curves. Three-dimensional flow analysis is carried out to verify the performance of the new blade. It is found that the new blade has improved the blade performance by 0.5%. Consequently, it is verified that the new blade is effective to improve the turbine internal efficiency and to lower the turbine weight and manufacturing cost by reducing the blade number by about 15%. 展开更多
关键词 optimization design highly loaded rotating blades artificial neural network genetic algorithm
下载PDF
Optimization of Fermentation Media for Enhancing Nitrite-oxidizing Activity by Artificial Neural Network Coupling Genetic Algorithm 被引量:2
11
作者 罗剑飞 林炜铁 +1 位作者 蔡小龙 李敬源 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第5期950-957,共8页
Two artificial intelligence techniques, artificial neural network and genetic algorithm, were applied to optimize the fermentation medium for improving the nitrite oxidization rate of nitrite oxidizing bacteria. Exper... Two artificial intelligence techniques, artificial neural network and genetic algorithm, were applied to optimize the fermentation medium for improving the nitrite oxidization rate of nitrite oxidizing bacteria. Experiments were conducted with the composition of medium components obtained by genetic algorithm, and the experimental data were used to build a BP (back propagation) neural network model. The concentrations of six medium components were used as input vectors, and the nitrite oxidization rate was used as output vector of the model. The BP neural network model was used as the objective function of genetic algorithm to find the optimum medium composition for the maximum nitrite oxidization rate. The maximum nitrite oxidization rate was 0.952 g 2 NO-2-N·(g MLSS)-1·d-1 , obtained at the genetic algorithm optimized concentration of medium components (g·L-1 ): NaCl 0.58, MgSO 4 ·7H 2 O 0.14, FeSO 4 ·7H 2 O 0.141, KH 2 PO 4 0.8485, NaNO 2 2.52, and NaHCO 3 3.613. Validation experiments suggest that the experimental results are consistent with the best result predicted by the model. A scale-up experiment shows that the nitrite degraded completely after 34 h when cultured in the optimum medium, which is 10 h less than that cultured in the initial medium. 展开更多
关键词 BP neural network genetic algorithm OPTIMIZATION nitrite oxidization rate nitrite-oxidizing bacteria
下载PDF
Semi-autogenous mill power prediction by a hybrid neural genetic algorithm 被引量:2
12
作者 Hoseinian Fatemeh Sadat Abdollahzadeh Aliakbar Rezai Bahram 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期151-158,共8页
There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill l... There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill load cell mass,SAG mill solid percentage,inlet and outlet water to the SAG mill and work index are studied.A total number of185full-scale SAG mill works are utilized to develop the artificial neural network(ANN)and the hybrid of ANN and genetic algorithm(GANN)models with relations of input and output data in the full-scale.The results show that the GANN model is more efficient than the ANN model in predicting SAG mill power.The sensitivity analysis was also performed to determine the most effective input parameters on SAG mill power.The sensitivity analysis of the GANN model shows that the work index,inlet water to the SAG mill,mill load cell weight,SAG mill solid percentage,mass flowrate and feed moisture have a direct relationship with mill power,while outlet water to the SAG mill has an inverse relationship with mill power.The results show that the GANN model could be useful to evaluate a good output to changes in input operation parameters. 展开更多
关键词 semi-autogenous mill mill power prediction sensitivity analysis artificial neural network genetic algorithm
下载PDF
Recovery prediction of copper oxide ore column leaching by hybrid neural genetic algorithm 被引量:2
13
作者 Fatemeh Sadat HOSEINIAN Aliakbar ABDOLLAHZADE +1 位作者 Saeed Soltani MOHAMADI Mohsen HASHEMZADEH 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第3期686-693,共8页
The artificial neural network(ANN)and hybrid of artificial neural network and genetic algorithm(GANN)were appliedto predict the optimized conditions of column leaching of copper oxide ore with relations of input and o... The artificial neural network(ANN)and hybrid of artificial neural network and genetic algorithm(GANN)were appliedto predict the optimized conditions of column leaching of copper oxide ore with relations of input and output data.The leachingexperiments were performed in three columns with the heights of2,4and6m and in particle size of<25.4and<50.8mm.Theeffects of different operating parameters such as column height,particle size,acid flow rate and leaching time were studied tooptimize the conditions to achieve the maximum recovery of copper using column leaching in pilot scale.It was found that therecovery increased with increasing the acid flow rate and leaching time and decreasing particle size and column height.Theefficiency of GANN and ANN algorithms was compared with each other.The results showed that GANN is more efficient than ANNin predicting copper recovery.The proposed model can be used to predict the Cu recovery with a reasonable error. 展开更多
关键词 LEACHING copper oxide ore RECOVERY artificial neural network genetic algorithm
下载PDF
DETERMINING THE STRUCTURES AND PARAMETERS OF RADIAL BASIS FUNCTION NEURAL NETWORKS USING IMPROVED GENETIC ALGORITHMS 被引量:1
14
作者 Meiqin Liu Jida Chen 《Journal of Central South University》 SCIE EI CAS 1998年第2期68-73,共6页
The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error t... The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error term is used as the best criterion of optimizing the structures and parameters of networks. It is shown from the simulation results that the method not only improves the approximation and generalization capability of RBFNNs ,but also obtain the optimal or suboptimal structures of networks. 展开更多
关键词 RADIAL BASIS function neural network genetic algorithms Akaike′s information CRITERION OVERFITTING
下载PDF
Recovery and grade prediction of pilot plant flotation column concentrate by a hybrid neural genetic algorithm 被引量:6
15
作者 F. Nakhaei M.R. Mosavi A. Sam 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期69-77,共9页
Today flotation column has become an acceptable means of froth flotation for a fairly broad range of applications, in particular the cleaning of sulfides. Even after having been used for several years in mineral proce... Today flotation column has become an acceptable means of froth flotation for a fairly broad range of applications, in particular the cleaning of sulfides. Even after having been used for several years in mineral processing plants, the full potential of the flotation column process is still not fully exploited. There is no prediction of process performance for the complete use of available control capabilities. The on-line estimation of grade usually requires a significant amount of work in maintenance and calibration of on-stream analyzers, in order to maintain good accuracy and high availability. These difficulties and the high cost of investment and maintenance of these devices have encouraged the approach of prediction of metal grade and recovery. In this paper, a new approach has been proposed for metallurgical performance prediction in flotation columns using Artificial Neural Network (ANN). Despite of the wide range of applications and flexibility of NNs, there is still no general framework or procedure through which the appropriate network for a specific task can be designed. Design and structural optimization of NNs is still strongly dependent upon the designer's experience. To mitigate this problem, a new method for the auto-design of NNs was used, based on Genetic Algorithm (GA). The new proposed method was evaluated by a case study in pilot plant flotation column at Sarcheshmeh copper plant. The chemical reagents dosage, froth height, air, wash water flow rates, gas holdup, Cu grade in the rougher feed, flotation column feed, column tail and final concentrate streams were used to the simulation by GANN. In this work, multi-layer NNs with Back Propagation (BP) algorithm with 8-17-10-2 and 8- 13-6-2 arrangements have been applied to predict the Cu and Mo grades and recoveries, respectively. The correlation coefficient (R) values for the testing sets for Cu and Mo grades were 0.93, 0.94 and for their recoveries were 0.93, 0.92, respectively. The results discussed in this paper indicate that the proposed model can be used to predict the Cu and Mo grades and recoveries with a reasonable error. 展开更多
关键词 Artificial neural network genetic algorithm Flotation column Grade Recovery Prediction
下载PDF
Optimization of Cottonseed Meal De-gossypol Process by Extrusion via Genetic Algorithm Based on Artificial Neural Network 被引量:1
16
作者 Zhang Qiang Wu Hongbin Jin Xinwen 《Animal Husbandry and Feed Science》 CAS 2016年第1期51-53,57,共4页
[ Objective] The paper aimed to optimize cottonseed meal de-gossypol process by extrusion. [ Method ] The artificial neural network (ANN) was used to stimulate the degradation of free gossypol in cottonseed meal by ... [ Objective] The paper aimed to optimize cottonseed meal de-gossypol process by extrusion. [ Method ] The artificial neural network (ANN) was used to stimulate the degradation of free gossypol in cottonseed meal by extrusion process, and a three-layer back propagation neural network was established to predict the degradation of free gossypol. [ Result] The result of 10-fold cross validation showed that the ANN with the training function as traingdx at hidden layer with eight neurons gave the smallest mean square error (MSE). ANN predicted results were very close to the experimental results with correlation coefficient (R2 ) of 0.994 1 and RMSE of 0.497 1. A genetic algorithm (GA) based on the established neural network model was also used for optimizing de-gossypol process. The re- sults of GA showed that the optimal conditions of de-gossypol were puffing temperature 131℃, water ratio 51% , rotational speed 158 r/rain, and feeding speed 136 kg/h, while under this condition the degradation rate of free gossypol was 90.50%, which was close to the predicted result of CA with the small average relative er- ror of 1.38%. [ Conclusion] These results suggested that the GA based on a neural network model might be an excellent tool for optimizing cottonseed meal de-gos- sypol process. 展开更多
关键词 Cottonseed meal EXTRUSION De-gossypol neural network genetic algorithm
下载PDF
Parameters Optimization of the Heating Furnace Control Systems Based on BP Neural Network Improved by Genetic Algorithm 被引量:4
17
作者 Qiong Wang Xiaokan Wang 《Journal on Internet of Things》 2020年第2期75-80,共6页
The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the ... The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace. 展开更多
关键词 genetic algorithm parameter optimization PID control BP neural network heating furnace
下载PDF
Volume Flow Rate Optimization of an Axial Fan by Artificial Neural Network and Genetic Algorithm 被引量:1
18
作者 Yingkun Zhang Yu Wang Jingyin Li 《Open Journal of Fluid Dynamics》 2019年第3期207-223,共17页
The present study is to improve the volume flow rate of an axial fan through optimizing the blade shape under the demand for a specified static pressure. Fourteen design variables were selected to control the blade ca... The present study is to improve the volume flow rate of an axial fan through optimizing the blade shape under the demand for a specified static pressure. Fourteen design variables were selected to control the blade camber lines and the stacking line and the values of these variables were determined by using the experimental design method of the Latin Hypercube Sampling (LHS) to generate forty designs. The optimization was carried out using the genetic algorithm (GA) coupled with the artificial neural network (ANN) to increase the volume flow rate of the axial fan under the constraint of a specific motor power and a required static pressure. Differences in the aerodynamic performance and the flow characteristics between the original model and the optimal model were analyzed in detail. The results showed that the volume flow rate of the optimal model increased by 33%. The chord length, the installation angle and the cascade turning angle changed considerably. The forward leaned blade was beneficial to improve the volume flow rate of the axial fan. The axial velocity distribution and the static pressure distribution on the blade surface were improved after optimization. 展开更多
关键词 AXIAL FAN VOLUME Flow Rate genetic algorithm Artificial neural Network
下载PDF
A Review of an Expert System Design for Crude Oil Distillation Column Using the Neural Networks Model and Process Optimization and Control Using Genetic Algorithm Framework 被引量:1
19
作者 Lekan Taofeek Popoola Gutti Babagana Alfred Akpoveta Susu 《Advances in Chemical Engineering and Science》 2013年第2期164-170,共7页
This paper presents a comprehensive review of various traditional systems of crude oil distillation column design, modeling, simulation, optimization and control methods. Artificial neural network (ANN), fuzzy logic (... This paper presents a comprehensive review of various traditional systems of crude oil distillation column design, modeling, simulation, optimization and control methods. Artificial neural network (ANN), fuzzy logic (FL) and genetic algorithm (GA) framework were chosen as the best methodologies for design, optimization and control of crude oil distillation column. It was discovered that many past researchers used rigorous simulations which led to convergence problems that were time consuming. The use of dynamic mathematical models was also challenging as these models were also time dependent. The proposed methodologies use back-propagation algorithm to replace the convergence problem using error minimal method. 展开更多
关键词 Artificial neural Network CRUDE Oil Distillation Column genetic algorithm FRAMEWORK Sigmoidal Transfer Function BACK-PROPAGATION algorithm
下载PDF
An Approach to Carbon Emissions Prediction Using Generalized Regression Neural Network Improved by Genetic Algorithm 被引量:1
20
作者 Zhida Guo Jingyuan Fu 《Electrical Science & Engineering》 2020年第1期4-10,共7页
The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding t... The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding to climate change policy.Through the analysis of the application of the generalized regression neural network(GRNN)in prediction,this paper improved the prediction method of GRNN.Genetic algorithm(GA)was adopted to search the optimal smooth factor as the only factor of GRNN,which was then used for prediction in GRNN.During the prediction of carbon dioxide emissions using the improved method,the increments of data were taken into account.The target values were obtained after the calculation of the predicted results.Finally,compared with the results of GRNN,the improved method realized higher prediction accuracy.It thus offers a new way of predicting total carbon dioxide emissions,and the prediction results can provide macroscopic guidance and decision-making reference for China’s environmental protection and trading of carbon emissions. 展开更多
关键词 Carbon emissions genetic algorithm Generalized Regression neural Network Smooth Factor PREDICTION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部