期刊文献+
共找到386篇文章
< 1 2 20 >
每页显示 20 50 100
GLOBAL DYNAMICS OF DELAYED BIDIRECTIONAL ASSOCIATIVE MEMORY (BAM) NEURAL NETWORKS
1
作者 周进 刘曾荣 向兰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第3期327-335,共9页
Without assuming the smoothness,monotonicity and boundedness of the activation functions, some novel criteria on the existence and global exponential stability of equilibrium point for delayed bidirectional associativ... Without assuming the smoothness,monotonicity and boundedness of the activation functions, some novel criteria on the existence and global exponential stability of equilibrium point for delayed bidirectional associative memory (BAM) neural networks are established by applying the Liapunov functional methods and matrix_algebraic techniques. It is shown that the new conditions presented in terms of a nonsingular M matrix described by the networks parameters,the connection matrix and the Lipschitz constant of the activation functions,are not only simple and practical,but also easier to check and less conservative than those imposed by similar results in recent literature. 展开更多
关键词 bidirectional associative memory (BAM) neural network global exponential stability Liapunov function
下载PDF
STABILITY OF BIDIRECTIONAL ASSOCIATIVE MEMORY NEURAL NETWORKS WITH DELAYS 被引量:11
2
作者 Liao Xiaoxin(Dept. of Auto. Control. Huazhong Univ. of Science & Technology, Wuhan 430074)Liao Yang(Dept. of Computer Science, Nanjing University, Nanjing 210093)Liao Yu (Wuhan Soundy Science & Commerce Company, Wuhan 430070) 《Journal of Electronics(China)》 1998年第4期372-377,共6页
In this paper the globally asymptotic stability of more general two-layer nonlinear feedback associative memory neural networks with time delays is examined. The sufficient conditions of existence, uniqueness and glob... In this paper the globally asymptotic stability of more general two-layer nonlinear feedback associative memory neural networks with time delays is examined. The sufficient conditions of existence, uniqueness and globally asymptotic stability of the equilibrum position are given. Finally, two interesting examples to illustrate the theory are given. 展开更多
关键词 neural networks associative memories STABILITY
下载PDF
QUALITATIVE ANALYSIS OF BIDIRECTIONAL ASSOCIATIVE MEMORY NEURAL NETWORKS 被引量:4
3
作者 Liao Xiaoxin Liao Yang Liao Yu(Dept. of Auto. Control, Huazhong University of Science & Technology, Wuhan 430074) (Dept of Computer Science, Nanjing University, Nanjing 210093) ( Wuhan Soundy Science & Commerce Company, Wuhan 430070) 《Journal of Electronics(China)》 1998年第3期208-214,共7页
In this paper, the global exponential stability of an equilibrium position for general bidirectional associative memory neural networks are studied. The sufficient conditions of existence and uniqueness of the equilib... In this paper, the global exponential stability of an equilibrium position for general bidirectional associative memory neural networks are studied. The sufficient conditions of existence and uniqueness of the equilibrium position are given. The method of energy function is examined. Two examples are given to illustrate the theory. 展开更多
关键词 neural networks associative memories Stability energy FUNCTION
下载PDF
Almost periodic solutions of memristive multidirectional associative memory neural networks with mixed time delays
4
作者 Yan Zhang Yuanhua Qiao Lijuan Duan 《International Journal of Biomathematics》 SCIE 2024年第2期113-138,共26页
Traditional biological neural networks cannot simulate the real situation of the abrupt synaptic connections between neurons while modeling associative memory of human brains.In this paper,the memristive multidirectio... Traditional biological neural networks cannot simulate the real situation of the abrupt synaptic connections between neurons while modeling associative memory of human brains.In this paper,the memristive multidirectional associative memory neural networks(MAMNNs)with mixed time-varying delays are investigated in the sense of Filippov solution.First,three steps are given to prove the existence of the almost periodic solution.Two new lemmas are proposed to prove the boundness of the solution and the asymptotical almost periodicity of the solution by constructing Lyapunov function.Second,the uniqueness and global exponential stability of the almost periodic solution of memristive MAMNNs are investigated by a new Lyapunov function.The sufficient conditions guaranteeing the properties of almost periodic solution are derived based on the relevant definitions,Halanay inequality and Lyapunov function.The investigation is an extension of the research on the periodic solution and almost periodic solution of bidirectional associative memory neural networks.Finally,numerical examples with simulations are presented to show the validity of the main results. 展开更多
关键词 Almost periodic solutions memristive multidirectional associative memory neural networks mixed time-varying delays global exponential stability
原文传递
μ-stability of multiple equilibria in Cohen-Grossberg neural networks and its application to associative memory
5
作者 LIU Yang WANG Zhen +2 位作者 XIAO Min LI YuXia SHEN Hao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第9期2611-2624,共14页
In this paper, the μ-stability of multiple equilibrium points(EPs) in the Cohen-Grossberg neural networks(CGNNs) is addressed by designing a kind of discontinuous activation function(AF). Under some criteria, CGNNs w... In this paper, the μ-stability of multiple equilibrium points(EPs) in the Cohen-Grossberg neural networks(CGNNs) is addressed by designing a kind of discontinuous activation function(AF). Under some criteria, CGNNs with this AF are shown to possess at least 5^(n)EPs, of which 3^(n)EPs are locally μ-stable. Compared with the saturated AF or the sigmoidal AF, CGNNs with the designed AF can produce many more total/stable EPs. Therefore, when CGNNs with the designed discontinuous AF are applied to associative memory, they can store more prototype patterns. Moreover, the AF is expanded to a more general version to further increase the number of total/stable equilibria. The CGNNs with the expanded AF are found to produce(2k+3)^(n)EPs, of which (k+2)^(n)EPs are locally μ-stable. By adjusting two parameters in the AF, the number of sufficient conditions ensuring the μ-stability of multiple equilibria can be decreased. This finding implies that the computational complexity can be greatly reduced.Two numerical examples and an application to associative memory are illustrated to verify the correctness of the obtained results. 展开更多
关键词 associative memory Cohen-Grossberg neural networks discontinuous activation functions multiple equilibria μ-stability
原文传递
Global stability of bidirectional associative memory neural networks with continuously distributed delays 被引量:5
6
作者 张强 马润年 许进 《Science in China(Series F)》 2003年第5期327-334,共8页
Global asymptotic stability of the equilibrium point of bidirectional associative memory (BAM) neural networks with continuously distributed delays is studied. Under two mild assumptions on the activation functions, t... Global asymptotic stability of the equilibrium point of bidirectional associative memory (BAM) neural networks with continuously distributed delays is studied. Under two mild assumptions on the activation functions, two sufficient conditions ensuring global stability of such networks are derived by utilizing Lyapunov functional and some inequality analysis technique. The results here extend some previous results. A numerical example is given showing the validity of our method. 展开更多
关键词 global asymptotic stability bidirectional associative memory neural networks continuously distributed delays.
原文传递
New results on impulsive type inertial bidirectional associative memory neural networks 被引量:1
7
作者 Chaouki AOUITI Mahjouba Ben REZEG Yang CAO 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2020年第2期324-339,共16页
This paper is concerned with inertial bidirectional associative memory neural networks with mixed delays and impulsive effects.New and practical conditions are given to study the existence,uniqueness,and global expone... This paper is concerned with inertial bidirectional associative memory neural networks with mixed delays and impulsive effects.New and practical conditions are given to study the existence,uniqueness,and global exponential stability of anti-periodic solutions for the suggested system.We use differential inequality techniques to prove our main results.Finally,we give an illustrative example to demonstrate the effectiveness of our new results. 展开更多
关键词 Inertial neural networks Anti-periodic solutions Global exponential stability Impulsive effect Time-varying delay Bidirectional associative memory
原文传递
An Incremental Time-delay Neural Network for Dynamical Recurrent Associative Memory
8
作者 刘娟 Cai Zixing 《High Technology Letters》 EI CAS 2002年第1期72-75,共4页
An incremental time-delay neural network based on synapse growth, which is suitable for dynamic control and learning of autonomous robots, is proposed to improve the learning and retrieving performance of dynamical re... An incremental time-delay neural network based on synapse growth, which is suitable for dynamic control and learning of autonomous robots, is proposed to improve the learning and retrieving performance of dynamical recurrent associative memory architecture. The model allows steady and continuous establishment of associative memory for spatio-temporal regularities and time series in discrete sequence of inputs. The inserted hidden units can be taken as the long-term memories that expand the capacity of network and sometimes may fade away under certain condition. Preliminary experiment has shown that this incremental network may be a promising approach to endow autonomous robots with the ability of adapting to new data without destroying the learned patterns. The system also benefits from its potential chaos character for emergence. 展开更多
关键词 Time-delay recurrent neural network Spatio-temporal associative memory Pattern sequences learning Lifelong ontogenetic evolution Autonomous robots
下载PDF
EXPONENTIAL STABILITY AND PERIODIC SOLUTION OF HYBRID BIDIRECTIONAL ASSOCIATIVE MEMORY NEURAL NETWORKS WITH DISCRETE DELAYS
9
作者 谢惠琴 王全义 《Annals of Differential Equations》 2004年第3期312-320,共9页
In this paper, we study the existence, uniqueness, and the global exponential stability of the periodic solution and equilibrium of hybrid bidirectional associative memory neural networks with discrete delays. By inge... In this paper, we study the existence, uniqueness, and the global exponential stability of the periodic solution and equilibrium of hybrid bidirectional associative memory neural networks with discrete delays. By ingeniously importing real parameters di > 0 (i = 1,2, …, n) which can be adjusted, making use of the Lyapunov functional method and some analysis techniques, some new sufficient conditions are established. Our results generalize and improve the related results in [9]. These conditions can be used both to design globally exponentially stable and periodical oscillatory hybrid bidirectional associative neural networks with discrete delays, and to enlarge the area of designing neural networks. Our work has important significance in related theory and its application. 展开更多
关键词 hybrid bidirectional associative memory neural networks periodic solution EQUILIBRIUM global exponential stability
原文传递
Synthesization of high-capacity auto-associative memories using complex-valued neural networks 被引量:1
10
作者 黄玉娇 汪晓妍 +1 位作者 龙海霞 杨旭华 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第12期194-201,共8页
In this paper, a novel design procedure is proposed for synthesizing high-capacity auto-associative memories based on complex-valued neural networks with real-imaginary-type activation functions and constant delays. S... In this paper, a novel design procedure is proposed for synthesizing high-capacity auto-associative memories based on complex-valued neural networks with real-imaginary-type activation functions and constant delays. Stability criteria dependent on external inputs of neural networks are derived. The designed networks can retrieve the stored patterns by external inputs rather than initial conditions. The derivation can memorize the desired patterns with lower-dimensional neural networks than real-valued neural networks, and eliminate spurious equilibria of complex-valued neural networks. One numerical example is provided to show the effectiveness and superiority of the presented results. 展开更多
关键词 associative memory complex-valued neural network real-imaginary-type activation function external input
下载PDF
Multi-Valued Associative Memory Neural Network 被引量:1
11
作者 修春波 刘向东 张宇河 《Journal of Beijing Institute of Technology》 EI CAS 2003年第4期352-356,共5页
A novel learning method for multi-valued associative memory network is introduced, which is based on Hebb rule, but utilizes more information. According to the current probe vector, the connection weights matrix could... A novel learning method for multi-valued associative memory network is introduced, which is based on Hebb rule, but utilizes more information. According to the current probe vector, the connection weights matrix could be chosen dynamically. Double-valued and multi-valued associative memory are all realized in our simulation experiment. The experimental results show that the method could enhance the associative success rate. 展开更多
关键词 associative memory learning method neural network gray-scale images
下载PDF
CHAOTIC NEURAL NETWORK FOR ASSOCIATIVE MEMORY 被引量:1
12
作者 Zhang Yifeng Yang Luxi He Zhenya(Department of Radio Engineering, Nanjing, 210018) 《Journal of Electronics(China)》 1999年第2期130-137,共8页
Based on current research on applications of chaotic neuron network for information processing, the stability and convergence of chaotic neuron network are proved from the viewpoint of energy function. Moreover, a new... Based on current research on applications of chaotic neuron network for information processing, the stability and convergence of chaotic neuron network are proved from the viewpoint of energy function. Moreover, a new auto-associative matrix is devised for artificial neural network composed of chaotic neurons, thus, an improved chaotic neuron network for associative memory is built up. Finally, the associative recalling process of the network is analyzed in detail and explanations of improvement are given. 展开更多
关键词 CHAOTIC MAP associative memory neural networks
下载PDF
GLOBAL EXPONENTIAL STABILITY IN HOPFIELD AND BIDIRECTIONAL ASSOCIATIVE MEMORY NEURAL NETWORKS WITH TIME DELAYS 被引量:5
13
作者 RONGLIBIN LUWENLIAN CHENTIANPING 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2004年第2期255-262,共8页
Without assuming the boundedness, strict monotonicity and differentiability of the activation functions, the authors utilize the Lyapunov functional method to analyze the global convergence of some delayed models. For... Without assuming the boundedness, strict monotonicity and differentiability of the activation functions, the authors utilize the Lyapunov functional method to analyze the global convergence of some delayed models. For the Hopfield neural network with time delays, a new sufficient condition ensuring the existence, uniqueness and global exponential stability of the equilibrium point is derived. This criterion concerning the signs of entries in the connection matrix imposes constraints on the feedback matrix independently of the delay parameters. From a new viewpoint, the bidirectional associative memory neural network with time delays is investigated and a new global exponential stability result is given. 展开更多
关键词 Hopfield neural network Bidirectional associative memory (BAM) Global exponential stability Time delays Lyapunov functional
原文传递
A Hopfield-like hippocampal CA3 neural network model for studying associative memory in Alzheimer's disease
14
作者 Wangxiong Zhao Qingli Qiao Dan Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第22期1694-1700,共7页
Associative memory, one of the major cognitive functions in the hippocampal CA3 region, includes auto-associative memory and hetero-associative memory. Many previous studies have shown that Alzheimer's disease (AD)... Associative memory, one of the major cognitive functions in the hippocampal CA3 region, includes auto-associative memory and hetero-associative memory. Many previous studies have shown that Alzheimer's disease (AD) can lead to loss of functional synapses in the central nervous system, and associative memory functions in patients with AD are often impaired, but few studies have addressed the effect of AD on hetero-associative memory in the hippocampal CA3 region. In this study, based on a simplified anatomical structure and synaptic connections in the hippocampal CA3 region, a three-layered Hopfield-like neural network model of hippocampal CA3 was proposed and then used to simulate associative memory functions in three circumstances: normal, synaptic deletion and synaptic compensation, according to Ruppin's synaptic deletion and compensation theory. The influences of AD on hetero-associative memory were further analyzed. The simulated results showed that the established three-layered Hopfield-like neural network model of hippocampal CA3 has both auto-associative and hetero-associative memory functions. With increasing synaptic deletion level, both associative memory functions were gradually impaired and the mean firing rates of the neurons within the network model were decreased. With gradual increasing synaptic compensation, the associative memory functions of the network were improved and the mean firing rates were increased. The simulated results suggest that the Hopfield-like neural network model can effectively simulate both associative memory functions of the hippocampal CA3 region. Synaptic deletion affects both auto-associative and hetero-associative memory functions in the hippocampal CA3 region, and can also result in memory dysfunction. To some extent, synaptic compensation measures can offset two kinds of associative memory dysfunction caused by synaptic deletion in the hippocampal CA3 area. 展开更多
关键词 hippocampal CA3 region Hopfield-like neural network associative memory Alzheimer's disease Izhkevich neuronal model firing rate
下载PDF
Double-pattern associative memory neural network with pattern loop
15
作者 JianWANG ZongyuanMAO 《控制理论与应用(英文版)》 EI 2004年第2期193-195,共3页
A double-pattern associative memory neural network with “pattern loop” is proposed. It can store 2N bit bipolar binary patterns up to the order of 2 2N , retrieve part or all of the stored patterns which all have th... A double-pattern associative memory neural network with “pattern loop” is proposed. It can store 2N bit bipolar binary patterns up to the order of 2 2N , retrieve part or all of the stored patterns which all have the minimum Hamming distance with input pattern, completely eliminate spurious patterns, and has higher storing efficiency and reliability than conventional associative memory. The length of a pattern stored in this associative memory can be easily extended from 2N to kN. 展开更多
关键词 associative memory Hamming distance neural network
下载PDF
Stability Analysis for Memristive Recurrent Neural Network and Its Application to Associative Memory 被引量:2
16
作者 Gang Bao Yuanyuan Chen +1 位作者 Siyu Wen Zhicen Lai 《自动化学报》 EI CSCD 北大核心 2017年第12期2244-2252,共9页
下载PDF
BIDIRECTIONAL ASSOCIATIVE MEMORY ENSEMBLE
17
作者 王敏 储荣 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第4期343-348,共6页
The multiple classifier system (MCS), composed of multiple diverse classifiers or feed-forward neural networks, can significantly improve the classification or generalization ability of a single classifier. Enlighte... The multiple classifier system (MCS), composed of multiple diverse classifiers or feed-forward neural networks, can significantly improve the classification or generalization ability of a single classifier. Enlightened by the fundamental idea of MCS, the ensemble is introduced into the quick learning for bidirectional associative memory (QLBAM) to construct a BAM ensemble, for improving the storage capacity and the error-correction capability without destroying the simple structure of the component BAM. Simulations show that, with an appropriate "overproduce and choose" strategy or "thinning" algorithm, the proposed BAM ensemble significantly outperforms the single QLBAM in both storage capacity and noise-tolerance capability. 展开更多
关键词 bidirectional associative memory neural network ensemble thinning algorithm
下载PDF
Robust asymptotic stability for BAM neural networks with time-varying delays via LMI approach
18
作者 LIU Jia ZONG Guang-deng ZHANG Yun-xi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2009年第3期282-290,共9页
Several novel stability conditions for BAM neural networks with time-varying delays are studied.Based on Lyapunov-Krasovskii functional combined with linear matrix inequality approach,the delay-dependent linear matrix... Several novel stability conditions for BAM neural networks with time-varying delays are studied.Based on Lyapunov-Krasovskii functional combined with linear matrix inequality approach,the delay-dependent linear matrix inequality(LMI) conditions are established to guarantee robust asymptotic stability for given delayed BAM neural networks.These criteria can be easily verified by utilizing the recently developed algorithms for solving LMIs.A numerical example is provided to demonstrate the effectiveness and less conservatism of the main results. 展开更多
关键词 robust asymptotic stability bidirectional associative memory (BAM) neural networks timevarying delays linear matrix inequality(LMI) Lyapunov-Krasovskii functional
下载PDF
Delay-Dependent Exponential Stability Criterion for BAM Neural Networks with Time-Varying Delays
19
作者 Wei-Wei Su Yi-Ming Chen 《Journal of Electronic Science and Technology of China》 2008年第1期66-69,共4页
By employing the Lyapunov stability theory and linear matrix inequality(LMI)technique,delay-dependent stability criterion is derived to ensure the exponential stability of bi-directional associative memory(BAM)neu... By employing the Lyapunov stability theory and linear matrix inequality(LMI)technique,delay-dependent stability criterion is derived to ensure the exponential stability of bi-directional associative memory(BAM)neural networks with time-varying delays.The proposed condition can be checked easily by LMI control toolbox in Matlab.A numerical example is given to demonstrate the effectiveness of our results. 展开更多
关键词 Bi-directional associative memory(BAM) neural networks delay-dependent exponentialstability linear matrix inequality (LMI) lyapunovstability theory time-varying delays.
下载PDF
LMI-based approach for global asymptotic stability analysis of continuous BAM neural networks 被引量:2
20
作者 张森林 刘妹琴 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第1期32-37,共6页
Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network mode... Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network model (SNNM) is ad- vanced. By using state affine transformation, the BAM neural networks were converted to SNNMs. Some sufficient conditions for the global asymptotic stability of continuous BAM neural networks were derived from studies on the SNNMs’ stability. These conditions were formulated as easily verifiable linear matrix inequalities (LMIs), whose conservativeness is relatively low. The approach proposed extends the known stability results, and can also be applied to other forms of recurrent neural networks (RNNs). 展开更多
关键词 Standard neural network model (SNNM) Bidirectional associative memory (BAM) neural network Linear matrix inequality (LMI) Linear differential inclusion (LDI) Global asymptotic stability
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部