Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis.Therefore,neural regeneration may be a promising target for treatment of many neurological illnesses.The regenerati...Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis.Therefore,neural regeneration may be a promising target for treatment of many neurological illnesses.The regenerative capacity of adult neural stem cells can be chara cterized by two states:quiescent and active.Quiescent adult neural stem cells are more stable and guarantee the quantity and quality of the adult neural stem cell pool.Active adult neural stem cells are chara cterized by rapid proliferation and differentiation into neurons which allow for integration into neural circuits.This review focuses on diffe rences between quiescent and active adult neural stem cells in nutrition metabolism and protein homeostasis.Furthermore,we discuss the physiological significance and underlying advantages of these diffe rences.Due to the limited number of adult neural stem cells studies,we refe rred to studies of embryonic adult neural stem cells or non-mammalian adult neural stem cells to evaluate specific mechanisms.展开更多
An active stereo vision system based on a model of neural pathways of human binocular motor system is proposed. With this model, it is guaranteed that the two cameras of the active stereo vision system can keep their ...An active stereo vision system based on a model of neural pathways of human binocular motor system is proposed. With this model, it is guaranteed that the two cameras of the active stereo vision system can keep their lines of sight fixed on the same target object during smooth pursuit. This feature is very important for active stereo vision systems, since not only 3D reconstruction needs the two cameras have an overlapping field of vision, but also it can facilitate the 3D reconstruction algorithm. To evaluate the effectiveness of the proposed method, some software simulations are done to demonstrate the same target tracking characteristic in a virtual environment apt to mistracking easily. Here, mistracking means two eyes track two different objects separately. Then the proposed method is implemented in our active stereo vision system to perform real tracking task in a laboratory scene where several persons walk self-determining. Before the proposed model is implemented in the system, mistracking occurred frequently. After it is enabled, mistracking never occurred. The result shows that the vision system based on neural pathways of human binocular motor system can reliably avoid mistracking.展开更多
Neural degeneration is a very complicated process. In spite of all the advancements in the molecular chemistry, there are many unknown aspects of the phenomena of neurodegeneration which need to be put together. It is...Neural degeneration is a very complicated process. In spite of all the advancements in the molecular chemistry, there are many unknown aspects of the phenomena of neurodegeneration which need to be put together. It is a common sequela of the conditions of niacin deficiency. Neural degeneration in Pellagra manifests as chromatolysis mainly in pyramidal followed by other neurons and glial cells. However, there is a gross lack of understanding of biochemi- cal mechanisms of neurodegeneration in niacin deficiency states. Because of the necessity of niacin or its amide derivative NAD in a number of biochemical pathways, it is understandable that several of these pathways may be involved in the common outcome of neural degener- ation. Here, we highlight five pathways that could be involved in the neuraldegeneration for which evidence has accumulated through several studies. These pathways are: 1) the trypto- phan-kyneurenic acid pathway, 2) the mitochondrial ATP generation related pathways, 3) the poly (ADP-ibose) polymerase (PARP) pathway, 4) the BDNF-TRKB Axis abnormalities, 5) the genetic influences of niacin deficiency.展开更多
The pathological implication of amyloid precursor protein(APP)in Alzheimer’s disease has been widely documented due to its involvement in the generation of amyloid-β peptide.However,the physiological functions of AP...The pathological implication of amyloid precursor protein(APP)in Alzheimer’s disease has been widely documented due to its involvement in the generation of amyloid-β peptide.However,the physiological functions of APP are still poorly understood.APP is considered a multimodal protein due to its role in a wide variety of processes,both in the embryo and in the adult brain.Specifically,APP seems to play a key role in the proliferation,differentiation and maturation of neural stem cells.In addition,APP can be processed through two canonical processing pathways,generating different functionally active fragments:soluble APP-α,soluble APP-β,amyloid-β peptide and the APP intracellular C-terminal domain.These fragments also appear to modulate various functions in neural stem cells,including the processes of proliferation,neurogenesis,gliogenesis or cell death.However,the molecular mechanisms involved in these effects are still unclear.In this review,we summarize the physiological functions of APP and its main proteolytic derivatives in neural stem cells,as well as the possible signaling pathways that could be implicated in these effects.The knowledge of these functions and signaling pathways involved in the onset or during the development of Alzheimer’s disease is essential to advance the understanding of the pathogenesis of Alzheimer’s disease,and in the search for potential therapeutic targets.展开更多
Electroacupuncture for the treatment of spinal cord iniury has a good dinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Daw- ley rats was clamped fo...Electroacupuncture for the treatment of spinal cord iniury has a good dinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Daw- ley rats was clamped for 60 seconds. Dazhui (GV14) and Mingmen (GV4) acupoints of rats were subjected to electroacupuncture. Enzyme-linked immunosorbent assay revealed that the expres- sion of serum inflammatory factors was apparently downregulated in rat models of spinal cord injury after electroacupuncture. Hematoxylin-eosin staining and immunohistochemistry results demonstrated that electroacupuncture contributed to the proliferation of neural stem cells in rat injured spinal cord, and suppressed their differentiation into astrocytes. Real-time quantitative PCR and western blot assays showed that electroacupuncture inhibited activation of the Notch signaling pathway induced by spinal cord injury. These findings indicate that electroacupuncture repaired the injured spinal cord by suppressing the Notch signaling pathway and promoting the proliferation of endogenous neural stem ceils.展开更多
Rho-associated kinase (ROCK) is a serine/threonine kinase and one of the major downstream effectors of the small GTPase RhoA. The Rho/ROCK pathway is closely related to the pathogenesis of several central nervous syst...Rho-associated kinase (ROCK) is a serine/threonine kinase and one of the major downstream effectors of the small GTPase RhoA. The Rho/ROCK pathway is closely related to the pathogenesis of several central nervous system (CNS) disorders, and involved in many aspects of neuronal functions including neurite outgrowth and retraction. In the adult CNS, the damaged neuron regeneration is very difficult due to the presence of myelin-associated axon growth inhibitors such as Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte-myelin glycoprotein (Omgp), etc. The effects of these axon growth inhibitors are reversed by blocking the Rho/ROCK pathway 47 vitro, and the inhibition of Rho/ROCK pathway can promote axon regeneration and functional recovery in the injured CNS in viva In addition, the therapeutic effects of the Rho/ROCK inhibitors have also been demonstrated in some animal models and the Rho/ROCK pathway becomes an attractive target for the development of drugs for treating CNS disorders. In this review, we summarized on the effect of the Rho and the downstream factor ROCK in neural regeneration, and the potential therapeutic effect of Rho/ROCK inhibitors in the survival and axonal regeneration of retinal ganglion cell was also discussed.展开更多
Objective:To investigate the effect of the spinal cord extracts(SCE)after spinal cord injuries(SCIs)on the proliferation of rat embryonic neural stem cells(NSCs)and the expressions of mRNA of Notch1 as well as of Hes1...Objective:To investigate the effect of the spinal cord extracts(SCE)after spinal cord injuries(SCIs)on the proliferation of rat embryonic neural stem cells(NSCs)and the expressions of mRNA of Notch1 as well as of Hes1 in this process in vitro.Methods:The experiment was conducted in 4 different mediums:NSCs+PBS(Group A-blank control group),NSCs+SCE with healthy SD rats(Croup B-normal control group),NSCs+SCE with SD rats receiving sham-operation treatment(Croup C-sham-operation group)and NSCs+SCE with SCIs rats(Group D-paraplegic group).Proliferative abilities of 4 different groups were analyzed by MTT chromatometry after co-culture for 1,2,3,4 and 5 d,respectively.The expressions of Notch 1 and Hes1 mRNA were also detected with RT-PCR after co-culture for 24 and 48 h,respectively.Results:After co-culture for 1,2,3,4 and 5 d respectively,the MTT values of group D were significantly higher than those of group A,group B and group C(P<0.05).However,there were no significantly differences regarding MTT values between group A,group B and group C after co-culture for 1,2,3,4 and 5 d,respectively(P>0.05).Both the expressions of Notch1 and Hes1 mRNA of group D were significantly higher than those of other 3 groups after co-culture for 24 h and 48 h as well(P<0.05).But there was no difference oin expressions of Notch1 and Hes1 mRNA among group A,group B and group C after co-culture for 24 h and 48 h(P>0.05).There was no difference in expressions of Notch1and Hes1 mRNA between 24 h and 48 h treatment in group D.Conclusions:SCE could promote the proliferation of NSCs.It is demonstrated that the microenvironment of SCI may promote the proliferation of NSCs.Besides,SCE could increase the expression of Notch1 and Hes1 mRNA of NSC.It can be concluded that the Notch signaling pathway activation is one of the mechanisms that locally injured microenvironment contributes to the proliferation of ENSC after SCIs.This process may be performed by up-regulating the expressions of Notch1 and Hes1 gene.展开更多
A middle cerebral artery occlusion-model was established in rats using the improved thread embolism method.Rats were treated with acupuncture at either Dazhui(DU14),Renzhong(DU26), Baihui(DU20),or a non-meridian...A middle cerebral artery occlusion-model was established in rats using the improved thread embolism method.Rats were treated with acupuncture at either Dazhui(DU14),Renzhong(DU26), Baihui(DU20),or a non-meridian point.Detection with protein-chip technology showed that the level of protein phosphorylation in both groups was upregulated or downregulated depending on the signaling pathway compared with the model group that did not receive acupuncture.Analysis of proteins showing downregulated phosphorylation revealed that five signaling pathways were activated in the acupuncture-treatment group,while only two were activated in the acupuncture-control group.In contrast,analysis of proteins showing upregulated phosphorylation revealed only one pathway was activated in the acupuncture-treatment group,whereas four pathways were activated in the acupuncture-control group.Furthermore,the number of activated proteins in the acupuncture-treatment group was not only higher than the acupuncture-control group,but unlike the acupuncture-control group,the majority of activated proteins were key proteins in the signaling pathways.Our findings indicate that acupuncture at specific points can activate multiple signaling pathways to promote the restoration of brain tissue following ischemic injury,and that this is based on a combination of effects resulting from multiple pathways,targets,and means.展开更多
Knowledge of the plasticity of language pathways neurosurgeons to achieve maximum resection wh n patients with low-grade glioma is important for e preserving neurological function. The current study sought to investig...Knowledge of the plasticity of language pathways neurosurgeons to achieve maximum resection wh n patients with low-grade glioma is important for e preserving neurological function. The current study sought to investigate changes in the ventral language pathways in patients with low-grade glioma located in regions likely to affect the dorsal language pathways. The results revealed no significant difference in fractional anisotropy values in the arcuate fasciculus between groups or between hemispheres. However, fractional anisotropy and lateralization index values in the left inferior longitudinal fasciculus and lateralization index values in the left inferior fronto-occpital fasciculus were higher in patients than in healthy subjects. These results indicate plasticity of language pathways in patients with low-grade glioma. The ventral language pathways may perform more functions in patients than in healthy subjects. As such, it is important to protect the ventral language pathways intraoperatively.展开更多
Zebrafish and human genomes are highly homologous;however,despite this genomic similarity,adult zebrafish can achieve neuronal proliferation,regeneration and functional restoration within 6–8 weeks after spinal cord ...Zebrafish and human genomes are highly homologous;however,despite this genomic similarity,adult zebrafish can achieve neuronal proliferation,regeneration and functional restoration within 6–8 weeks after spinal cord injury,whereas humans cannot.To analyze differentially expressed zebrafish genes between axon-regenerated neurons and axon-non-regenerated neurons after spinal cord injury,and to explore the key genes and pathways of axonal regeneration after spinal cord injury,microarray GSE56842 was analyzed using the online tool,GEO2R,in the Gene Expression Omnibus database.Gene ontology and protein-protein interaction networks were used to analyze the identified differentially expressed genes.Finally,we screened for genes and pathways that may play a role in spinal cord injury repair in zebrafish and mammals.A total of 636 differentially expressed genes were obtained,including 255 up-regulated and 381 down-regulated differentially expressed genes in axon-regenerated neurons.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment results were also obtained.A protein-protein interaction network contained 480 node genes and 1976 node connections.We also obtained the 10 hub genes with the highest correlation and the two modules with the highest score.The results showed that spectrin may promote axonal regeneration after spinal cord injury in zebrafish.Transforming growth factor beta signaling may inhibit repair after spinal cord injury in zebrafish.Focal adhesion or tight junctions may play an important role in the migration and proliferation of some cells,such as Schwann cells or neural progenitor cells,after spinal cord injury in zebrafish.Bioinformatic analysis identified key candidate genes and pathways in axonal regeneration after spinal cord injury in zebrafish,providing targets for treatment of spinal cord injury in mammals.展开更多
Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell diff...Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell differentiation into neurons. Mitogen-activated protein kinase signaling was identified as one of the key pathways underlying this differentiation process. The present study shows phosphorylated extracellular signal-regulated protein kinase and phosphorylated p38 protein expression was increased after differentiation. Cellular signaling pathway blocking agents, PD98059 and SB203580, inhibited extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways respectively, mRNA and protein expression of the neuronal marker, neuron specific enolase, and neural stem cell marker, nestin, were decreased in bone marrow mesenchymal stem cells after treatment with the active principle region of Buyang Huanwu decoction. Experimental findings indicate that, extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways participate in bone marrow mesenchymal stem cell differentiation into neuron-like cells, induced by the active principle region of Buyang Huanwu decoction.展开更多
Using neural pathway tracing and immunohistochemical technique, the striato-direct pathway (BDA3 kDa injected into the rat lateral globus pallidus) and striato-indirect pathway (BDA3 kDa injected into the substanti...Using neural pathway tracing and immunohistochemical technique, the striato-direct pathway (BDA3 kDa injected into the rat lateral globus pallidus) and striato-indirect pathway (BDA3 kDa injected into the substantia nigra pars reticulata) neurons were specifically labeled, and then subjected to double-labeled immunohistochemistry for mu-OPIOID Receptor (specifically-labeled striatal patch compartment), D1, and D2, respectively. The experimental findings showed that there are no statistically significant differences in the soma diameter and the number of primary dendrites between the striato-direct (substantia nigra pars reticularis) and indirect (globus pallidum externum) neurons labeled retrograde by BDA3 kDa. In addition, these two kinds of projection neurons revealed no obvious coexistence. This evidence indicates that as a highly sensitive neural pathway tracer, BDA could yield reliably and exquisitely detailed labeling of target neurons and synaptic structures. The variance of the morphologic structures and the localization of neurons were not statistically significant between the striato-substantia nigra pars reticularis and the globus pallidum externum projection neurons. Mesencephalic and thalamic neurons correlated with striatal neurons in morphology. Especially the latter which make typical excitatory synaptic contacts with striato-direct and -indirect neurons. Thus, this evidence suggests that thalamic neurons may extensively excite striatal neurons.展开更多
Stromal cell-derived factor-1 and its receptor C-X-C chemokine receptor 4(CXCR4) have been shown to regulate neural regeneration after stroke.Howeve r,whether stromal cell-derived factor-1 receptor CXCR7,which is wide...Stromal cell-derived factor-1 and its receptor C-X-C chemokine receptor 4(CXCR4) have been shown to regulate neural regeneration after stroke.Howeve r,whether stromal cell-derived factor-1 receptor CXCR7,which is widely distributed in the develo ping and adult central nervous system,participates in neural regeneration remains poorly unde rstood.In this study,we established rat models of focal cerebral ischemia by injecting endothelin-1 into the cerebral co rtex and striatum.Starting on day 7 after injury,CXCR7-neutralizing antibody was injected into the lateral ventricle using a micro drug delivery system for 6 consecutive days.Our results showed that CXCR7-neutralizing antibody increased the total length and number of sprouting co rticospinal tra ct fibers in rats with cerebral ischemia,increased the expression of vesicular glutamate transporter 1 and growth-related protein 43,marke rs of the denervated spinal cord synapses,and promoted the differentiation and maturation of oligodendrocyte progenitor cells in the striatum.In addition,CXCR7 antibody increased the expression of CXCR4 in the striatum,increased the protein expression of RAS and ERK1/2 associated with the RAS/ERK signaling pathway,and im proved rat motor function.These findings suggest that CXCR7 improved neural functional recovery after ischemic stroke by promoting axonal regeneration,synaptogenesis,and myelin regeneration,which may be achieved by activation of CXCR4 and the RAS/ERK1/2 signaling pathway.展开更多
The corticoreticular pathway(CRP)mainly mediates proximal and axial muscles and therefore it is an important neural tract for walking(Miyai et al.,2002;Matsuyama et al.,2004;Mendoza and Foundas,2007).Diffusion ten...The corticoreticular pathway(CRP)mainly mediates proximal and axial muscles and therefore it is an important neural tract for walking(Miyai et al.,2002;Matsuyama et al.,2004;Mendoza and Foundas,2007).Diffusion tensor tractography(DTT),derived from diffusion tensor imaging(DTI),展开更多
Purpose:Mannitol is one of the first-line drugs for reducing cerebral edema through increasing the extracellular osmotic pressure.However,long-term administration of mannitol in the treatment of cerebral edema trigger...Purpose:Mannitol is one of the first-line drugs for reducing cerebral edema through increasing the extracellular osmotic pressure.However,long-term administration of mannitol in the treatment of cerebral edema triggers damage to neurons and astrocytes.Given that neural stem cell(NSC)is a subpopulation of main regenerative cells in the central nervous system after injury,the effect of mannitol on NSC is still elusive.The present study aims to elucidate the role of mannitol in NSC proliferation.Methods:C57 mice were derived from the animal house of Zunyi Medical University.A total of 15 pregnant mice were employed for the purpose of isolating NSCs in this investigation.Initially,mouse primary NSCs were isolated from the embryonic cortex of mice and subsequently identified through immunofluorescence staining.In order to investigate the impact of mannitol on NSC proliferation,both cell counting kit-8 assays and neurospheres formation assays were conducted.Thein vitro effects of mannitol were examined at various doses and time points.In order to elucidate the role of Aquaporin 4(AQP4)in the suppressive effect of mannitol on NSC proliferation,various assays including reverse transcription polymerase chain reaction,western blotting,and immunocytochemistry were conducted on control and mannitol-treated groups.Additionally,the phosphorylated p38(p-p38)was examined to explore the potential mechanism underlying the inhibitory effect of mannitol on NSC proliferation.Finally,to further confirm the involvement of the p38 mitogen-activated protein kinase-dependent(MAPK)signaling pathway in the observed inhibition of NSC proliferation by mannitol,SB203580 was employed.All data were analyzed using SPSS 20.0 software(SPSS,Inc.,Chicago,IL).The statistical analysis among multiple comparisons was performed using one-way analysis of variance(ANOVA),followed by Turkey’’s post hoc test in case of the data following a normal distribution using a Shapiro-Wilk normality test.Comparisons between 2 groups were determined using Student’s t-test,if the data exhibited a normal distribution using a Shapiro-Wilk normality test.Meanwhile,data were shown as median and interquartile range and analyzed using the Mann-WhitneyU test,if the data failed the normality test.A p<0.05 was considered as significant difference.Results:Primary NSC were isolated from the mice,and the characteristics were identified using immunostaining analysis.Thereafter,the results indicated that mannitol held the capability of inhibiting NSC proliferation in a dose-dependent and time-dependent manner using cell counting kit-8,neurospheres formation,and immunostaining of Nestin and Ki67 assays.During the process of mannitol suppressing NSC proliferation,the expression of AQP4 mRNA and protein was downregulated,while the gene expression of p-p38 was elevated by reverse transcription polymerase chain reaction,immunostaining,and western blotting assays.Subsequently,the administration of SB203580,one of the p38 MAPK signaling pathway inhibitors,partially abrogated this inhibitory effect resulting from mannitol,supporting the fact that the p38 MAPK signaling pathway participated in curbing NSC proliferation induced by mannitol.Conclusions:Mannitol inhibits NSC proliferation through downregulating AQP4,while upregulating the expression of p-p38 MAPK.展开更多
Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target no...Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target novel cellular and molecular mechanisms and mechanisms of action. Increasing evidence suggests that axon guidance molecules play a role in the structural and functional modifications of neural networks and that the dysregulation of these molecules is associated with epilepsy susceptibility. In this review, we discuss the essential role of axon guidance molecules in neuronal activity in patients with epilepsy as well as the impact of these molecules on synaptic plasticity and brain tissue remodeling. Furthermore, we examine the relationship between axon guidance molecules and neuroinflammation, as well as the structural changes in specific brain regions that contribute to the development of epilepsy. Ample evidence indicates that axon guidance molecules, including semaphorins and ephrins, play a fundamental role in guiding axon growth and the establishment of synaptic connections. Deviations in their expression or function can disrupt neuronal connections, ultimately leading to epileptic seizures. The remodeling of neural networks is a significant characteristic of epilepsy, with axon guidance molecules playing a role in the dynamic reorganization of neural circuits. This, in turn, affects synapse formation and elimination. Dysregulation of these molecules can upset the delicate balance between excitation and inhibition within a neural network, thereby increasing the risk of overexcitation and the development of epilepsy. Inflammatory signals can regulate the expression and function of axon guidance molecules, thus influencing axonal growth, axon orientation, and synaptic plasticity. The dysregulation of neuroinflammation can intensify neuronal dysfunction and contribute to the occurrence of epilepsy. This review delves into the mechanisms associated with the pathogenicity of axon guidance molecules in epilepsy, offering a valuable reference for the exploration of therapeutic targets and presenting a fresh perspective on treatment strategies for this condition.展开更多
OBJECTIVE:To investigate the efficacy of Zhenxin Anshen formula(镇心安神方,ZXAS)on atopic dermatitis(AD)by transient receptor potential vanilloid 1(TRPV1)and transient receptor potential ankyrin 1(TRPA1)signalling pat...OBJECTIVE:To investigate the efficacy of Zhenxin Anshen formula(镇心安神方,ZXAS)on atopic dermatitis(AD)by transient receptor potential vanilloid 1(TRPV1)and transient receptor potential ankyrin 1(TRPA1)signalling pathway in mice and in vitro.METHODS:AD-like lesions were induced by 1-chloro-2,4-dinitrobenzene(DNCB)to the shaved dorsal skin of BALB/c mice.BALB/c mice were divided into five groups:normal control,model control,cetirizine,low-,medium-,and high-dose of ZXAS.After ZXAS in-tervention,the skin lesions and blood samples were collected for hematoxylin and eosin-stained and measuring the concentrations of inflammatory cytokines.Immunoglobulin E(IgE),interleukin(IL)-4,IL-5,IL-13,and thymic stromal lymphopoietin(TSLP)were de-tected by Enzyme-linked immunosorbent assay(ELISA).The spinal cords were collected for measuring the expression of gastrin-releasing peptide receptor(GRPR),TRPV1,and TRPA1 by using immunohistochemistry,western blotting,and quantitative real-time polymerase chain reaction(qR T-PCR)analyses.In addition,3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide(MTT)assay,flow cytometry,ELISA,and Western blotting were conducted for analysis of primary dorsal root ganglia(DRG)neurons in vitro.RESULTS:ZXAS treatment improved DNCB-induced AD-like lesions through reducing dermatitis score,number of scratching and epidermal thickness,accompanied by the de-creased IgE and Th2 inflammatory cytokines.ZXAS also supressed the mRNA and protein expression of GRPR,TRPV1,and TRPA1 in the spinal cord.The medicated sera of ZXAS decreased capsaicin-induced Ca^(2+)influx and downregulated the expression of TRPV1,TRPA1,and phospholipase C in DRG neurons.CONCLUSIONS:The therapeutic effect of ZXAS on AD may be related to the regulation of TRPV1 and TRPA1 and inhibition of Ca^(2+)signals in neurons.展开更多
Background: VANGL2 plays a variety of roles in various cellular processes, including tissue morphogenesis, asymmetric cell division, and nervous system development. There is currently a lack of systematic organization...Background: VANGL2 plays a variety of roles in various cellular processes, including tissue morphogenesis, asymmetric cell division, and nervous system development. There is currently a lack of systematic organization in the development and disease of the nervous system. Purpose: To explore the role of VANGL2 in the development of the nervous system and related diseases. Methods: Literature review and analysis of the role of VANGL2 in the development and disease of the nervous system. Results: VANGL2 defects lead to the development of the nervous system through the misconfiguration of various cells, which affects the development of the cochlea, the conduction of neural signals, and the development of nervous system-related diseases such as Alzheimer’s disease, GBM, Bohling-Opitz syndrome, and hydrocephalus. Conclusions: The VANGL2 gene is essential for nervous system development and its deficiency is linked to severe congenital conditions and various disorders, highlighting the need for more research on treatments for related gene defects.展开更多
Motor imagery is the mental representation of an action without overt movement or muscle activation. However, the effects of motor imagery on stroke-induced hand dysfunction and brain neural networks are still unknown...Motor imagery is the mental representation of an action without overt movement or muscle activation. However, the effects of motor imagery on stroke-induced hand dysfunction and brain neural networks are still unknown. We conducted a randomized controlled trial in the China Rehabilitation Research Center. Twenty stroke patients, including 13 males and 7 females, 32–51 years old, were recruited and randomly assigned to the traditional rehabilitation treatment group(PP group, n = 10) or the motor imagery training combined with traditional rehabilitation treatment group(MP group, n = 10). All patients received rehabilitation training once a day, 45 minutes per session, five times per week, for 4 consecutive weeks. In the MP group, motor imagery training was performed for 45 minutes after traditional rehabilitation training, daily. Action Research Arm Test and the Fugl-Meyer Assessment of the upper extremity were used to evaluate hand functions before and after treatment. Transcranial magnetic stimulation was used to analyze motor evoked potentials in the affected extremity. Diffusion tensor imaging was used to assess changes in brain neural networks. Compared with the PP group, the MP group showed better recovery of hand function, higher amplitude of the motor evoked potential in the abductor pollicis brevis, greater fractional anisotropy of the right dorsal pathway, and an increase in the fractional anisotropy of the bilateral dorsal pathway. Our findings indicate that 4 weeks of motor imagery training combined with traditional rehabilitation treatment improves hand function in stroke patients by enhancing the dorsal pathway. This trial has been registered with the Chinese Clinical Trial Registry(registration number: Chi CTR-OCH-12002238).展开更多
Denervation often results in skeletal muscle atrophy.Different mechanisms seem to be involved in the determination between denervated slow and fast skeletal muscle atrophy.At the epigenetic level,mi RNAs are thought t...Denervation often results in skeletal muscle atrophy.Different mechanisms seem to be involved in the determination between denervated slow and fast skeletal muscle atrophy.At the epigenetic level,mi RNAs are thought to be highly involved in the pathophysiological progress of denervated muscles.We used mi RNA microarrays to determine mi RNA expression profiles from a typical slow muscle(soleus muscle) and a typical fast muscle(tibialis anterior muscle) at an early denervation stage in a rat model.Results showed that mi R-206,mi R-195,mi R-23 a,and mi R-30 e might be key factors in the transformation process from slow to fast muscle in denervated slow muscles.Additionally,certain mi RNA molecules(mi R-214,mi R-221,mi R-222,mi R-152,mi R-320,and Let-7e) could be key regulatory factors in the denervated atrophy process involved in fast muscle.Analysis of signaling pathway networks revealed the mi RNA molecules that were responsible for regulating certain signaling pathways,which were the final targets(e.g.,p38 MAPK pathway; Pax3/Pax7 regulates Utrophin and follistatin by HDAC4; IGF1/PI3K/Akt/m TOR pathway regulates atrogin-1 and Mu RF1 expression via Fox O phosphorylation).Our results provide a better understanding of the mechanisms of denervated skeletal muscle pathophysiology.展开更多
基金supported by the National Natural Science Foundation of China,No.82171336(to XX)。
文摘Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis.Therefore,neural regeneration may be a promising target for treatment of many neurological illnesses.The regenerative capacity of adult neural stem cells can be chara cterized by two states:quiescent and active.Quiescent adult neural stem cells are more stable and guarantee the quantity and quality of the adult neural stem cell pool.Active adult neural stem cells are chara cterized by rapid proliferation and differentiation into neurons which allow for integration into neural circuits.This review focuses on diffe rences between quiescent and active adult neural stem cells in nutrition metabolism and protein homeostasis.Furthermore,we discuss the physiological significance and underlying advantages of these diffe rences.Due to the limited number of adult neural stem cells studies,we refe rred to studies of embryonic adult neural stem cells or non-mammalian adult neural stem cells to evaluate specific mechanisms.
文摘An active stereo vision system based on a model of neural pathways of human binocular motor system is proposed. With this model, it is guaranteed that the two cameras of the active stereo vision system can keep their lines of sight fixed on the same target object during smooth pursuit. This feature is very important for active stereo vision systems, since not only 3D reconstruction needs the two cameras have an overlapping field of vision, but also it can facilitate the 3D reconstruction algorithm. To evaluate the effectiveness of the proposed method, some software simulations are done to demonstrate the same target tracking characteristic in a virtual environment apt to mistracking easily. Here, mistracking means two eyes track two different objects separately. Then the proposed method is implemented in our active stereo vision system to perform real tracking task in a laboratory scene where several persons walk self-determining. Before the proposed model is implemented in the system, mistracking occurred frequently. After it is enabled, mistracking never occurred. The result shows that the vision system based on neural pathways of human binocular motor system can reliably avoid mistracking.
文摘Neural degeneration is a very complicated process. In spite of all the advancements in the molecular chemistry, there are many unknown aspects of the phenomena of neurodegeneration which need to be put together. It is a common sequela of the conditions of niacin deficiency. Neural degeneration in Pellagra manifests as chromatolysis mainly in pyramidal followed by other neurons and glial cells. However, there is a gross lack of understanding of biochemi- cal mechanisms of neurodegeneration in niacin deficiency states. Because of the necessity of niacin or its amide derivative NAD in a number of biochemical pathways, it is understandable that several of these pathways may be involved in the common outcome of neural degener- ation. Here, we highlight five pathways that could be involved in the neuraldegeneration for which evidence has accumulated through several studies. These pathways are: 1) the trypto- phan-kyneurenic acid pathway, 2) the mitochondrial ATP generation related pathways, 3) the poly (ADP-ibose) polymerase (PARP) pathway, 4) the BDNF-TRKB Axis abnormalities, 5) the genetic influences of niacin deficiency.
基金supported by grants from the Ministerio de Ciencia e Innovación-Instituto de Salud Carlos Ⅲ(PI-10/00291 and MPY1412/09)Ministerio de Economía y Competitividad(SAF2015-71140-R)+2 种基金Comunidad de Madrid(Neurostem-Comunidad de Madrid consortium S2010/BMD-2336)supported by grants from Plan de Empleo Juvenil-Ministerio de Economía y Competitividad
文摘The pathological implication of amyloid precursor protein(APP)in Alzheimer’s disease has been widely documented due to its involvement in the generation of amyloid-β peptide.However,the physiological functions of APP are still poorly understood.APP is considered a multimodal protein due to its role in a wide variety of processes,both in the embryo and in the adult brain.Specifically,APP seems to play a key role in the proliferation,differentiation and maturation of neural stem cells.In addition,APP can be processed through two canonical processing pathways,generating different functionally active fragments:soluble APP-α,soluble APP-β,amyloid-β peptide and the APP intracellular C-terminal domain.These fragments also appear to modulate various functions in neural stem cells,including the processes of proliferation,neurogenesis,gliogenesis or cell death.However,the molecular mechanisms involved in these effects are still unclear.In this review,we summarize the physiological functions of APP and its main proteolytic derivatives in neural stem cells,as well as the possible signaling pathways that could be implicated in these effects.The knowledge of these functions and signaling pathways involved in the onset or during the development of Alzheimer’s disease is essential to advance the understanding of the pathogenesis of Alzheimer’s disease,and in the search for potential therapeutic targets.
基金supported by the Major Special Project of Scientific Research Fund of Yunnan Provincial Education Department of China,No.zd2012001
文摘Electroacupuncture for the treatment of spinal cord iniury has a good dinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Daw- ley rats was clamped for 60 seconds. Dazhui (GV14) and Mingmen (GV4) acupoints of rats were subjected to electroacupuncture. Enzyme-linked immunosorbent assay revealed that the expres- sion of serum inflammatory factors was apparently downregulated in rat models of spinal cord injury after electroacupuncture. Hematoxylin-eosin staining and immunohistochemistry results demonstrated that electroacupuncture contributed to the proliferation of neural stem cells in rat injured spinal cord, and suppressed their differentiation into astrocytes. Real-time quantitative PCR and western blot assays showed that electroacupuncture inhibited activation of the Notch signaling pathway induced by spinal cord injury. These findings indicate that electroacupuncture repaired the injured spinal cord by suppressing the Notch signaling pathway and promoting the proliferation of endogenous neural stem ceils.
基金Supported by National Nature Science Foundation of China (No.81070728)Shanghai "Science and Technology Innovation Action Plan" Basic Research Key Project,China (No.11JC1407700 and 11 JC1407701)+1 种基金Shanghai Nature Science Foundation, China (No.08ZR1413900)Shanghai Leading Academic Discipline Project, China(No.S30205)
文摘Rho-associated kinase (ROCK) is a serine/threonine kinase and one of the major downstream effectors of the small GTPase RhoA. The Rho/ROCK pathway is closely related to the pathogenesis of several central nervous system (CNS) disorders, and involved in many aspects of neuronal functions including neurite outgrowth and retraction. In the adult CNS, the damaged neuron regeneration is very difficult due to the presence of myelin-associated axon growth inhibitors such as Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte-myelin glycoprotein (Omgp), etc. The effects of these axon growth inhibitors are reversed by blocking the Rho/ROCK pathway 47 vitro, and the inhibition of Rho/ROCK pathway can promote axon regeneration and functional recovery in the injured CNS in viva In addition, the therapeutic effects of the Rho/ROCK inhibitors have also been demonstrated in some animal models and the Rho/ROCK pathway becomes an attractive target for the development of drugs for treating CNS disorders. In this review, we summarized on the effect of the Rho and the downstream factor ROCK in neural regeneration, and the potential therapeutic effect of Rho/ROCK inhibitors in the survival and axonal regeneration of retinal ganglion cell was also discussed.
基金supported by Health Bureau of Luzhou No:2012-S-40(1/5)Health Department of Sichuan(120389)
文摘Objective:To investigate the effect of the spinal cord extracts(SCE)after spinal cord injuries(SCIs)on the proliferation of rat embryonic neural stem cells(NSCs)and the expressions of mRNA of Notch1 as well as of Hes1 in this process in vitro.Methods:The experiment was conducted in 4 different mediums:NSCs+PBS(Group A-blank control group),NSCs+SCE with healthy SD rats(Croup B-normal control group),NSCs+SCE with SD rats receiving sham-operation treatment(Croup C-sham-operation group)and NSCs+SCE with SCIs rats(Group D-paraplegic group).Proliferative abilities of 4 different groups were analyzed by MTT chromatometry after co-culture for 1,2,3,4 and 5 d,respectively.The expressions of Notch 1 and Hes1 mRNA were also detected with RT-PCR after co-culture for 24 and 48 h,respectively.Results:After co-culture for 1,2,3,4 and 5 d respectively,the MTT values of group D were significantly higher than those of group A,group B and group C(P<0.05).However,there were no significantly differences regarding MTT values between group A,group B and group C after co-culture for 1,2,3,4 and 5 d,respectively(P>0.05).Both the expressions of Notch1 and Hes1 mRNA of group D were significantly higher than those of other 3 groups after co-culture for 24 h and 48 h as well(P<0.05).But there was no difference oin expressions of Notch1 and Hes1 mRNA among group A,group B and group C after co-culture for 24 h and 48 h(P>0.05).There was no difference in expressions of Notch1and Hes1 mRNA between 24 h and 48 h treatment in group D.Conclusions:SCE could promote the proliferation of NSCs.It is demonstrated that the microenvironment of SCI may promote the proliferation of NSCs.Besides,SCE could increase the expression of Notch1 and Hes1 mRNA of NSC.It can be concluded that the Notch signaling pathway activation is one of the mechanisms that locally injured microenvironment contributes to the proliferation of ENSC after SCIs.This process may be performed by up-regulating the expressions of Notch1 and Hes1 gene.
基金supported by the National Natural Science Foundation of China for Youth,No.201130901901a grant by Youth Fund Project of the Ministry of Education ofChina,No.11B092
文摘A middle cerebral artery occlusion-model was established in rats using the improved thread embolism method.Rats were treated with acupuncture at either Dazhui(DU14),Renzhong(DU26), Baihui(DU20),or a non-meridian point.Detection with protein-chip technology showed that the level of protein phosphorylation in both groups was upregulated or downregulated depending on the signaling pathway compared with the model group that did not receive acupuncture.Analysis of proteins showing downregulated phosphorylation revealed that five signaling pathways were activated in the acupuncture-treatment group,while only two were activated in the acupuncture-control group.In contrast,analysis of proteins showing upregulated phosphorylation revealed only one pathway was activated in the acupuncture-treatment group,whereas four pathways were activated in the acupuncture-control group.Furthermore,the number of activated proteins in the acupuncture-treatment group was not only higher than the acupuncture-control group,but unlike the acupuncture-control group,the majority of activated proteins were key proteins in the signaling pathways.Our findings indicate that acupuncture at specific points can activate multiple signaling pathways to promote the restoration of brain tissue following ischemic injury,and that this is based on a combination of effects resulting from multiple pathways,targets,and means.
基金supported by the National Natural Science Foundation of China, No. 31040039the Natural Science Foundation of Beijing, No. 7102145the Military Clinical High-Tech Foundation, No. 2010gxjso94
文摘Knowledge of the plasticity of language pathways neurosurgeons to achieve maximum resection wh n patients with low-grade glioma is important for e preserving neurological function. The current study sought to investigate changes in the ventral language pathways in patients with low-grade glioma located in regions likely to affect the dorsal language pathways. The results revealed no significant difference in fractional anisotropy values in the arcuate fasciculus between groups or between hemispheres. However, fractional anisotropy and lateralization index values in the left inferior longitudinal fasciculus and lateralization index values in the left inferior fronto-occpital fasciculus were higher in patients than in healthy subjects. These results indicate plasticity of language pathways in patients with low-grade glioma. The ventral language pathways may perform more functions in patients than in healthy subjects. As such, it is important to protect the ventral language pathways intraoperatively.
基金supported by the State Key Program of National Natural Science Foundation of China,No.81330042(to SQF)the International Cooperation Program of the National Natural Science Foundation of China,No.81620108018(to SQF)
文摘Zebrafish and human genomes are highly homologous;however,despite this genomic similarity,adult zebrafish can achieve neuronal proliferation,regeneration and functional restoration within 6–8 weeks after spinal cord injury,whereas humans cannot.To analyze differentially expressed zebrafish genes between axon-regenerated neurons and axon-non-regenerated neurons after spinal cord injury,and to explore the key genes and pathways of axonal regeneration after spinal cord injury,microarray GSE56842 was analyzed using the online tool,GEO2R,in the Gene Expression Omnibus database.Gene ontology and protein-protein interaction networks were used to analyze the identified differentially expressed genes.Finally,we screened for genes and pathways that may play a role in spinal cord injury repair in zebrafish and mammals.A total of 636 differentially expressed genes were obtained,including 255 up-regulated and 381 down-regulated differentially expressed genes in axon-regenerated neurons.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment results were also obtained.A protein-protein interaction network contained 480 node genes and 1976 node connections.We also obtained the 10 hub genes with the highest correlation and the two modules with the highest score.The results showed that spectrin may promote axonal regeneration after spinal cord injury in zebrafish.Transforming growth factor beta signaling may inhibit repair after spinal cord injury in zebrafish.Focal adhesion or tight junctions may play an important role in the migration and proliferation of some cells,such as Schwann cells or neural progenitor cells,after spinal cord injury in zebrafish.Bioinformatic analysis identified key candidate genes and pathways in axonal regeneration after spinal cord injury in zebrafish,providing targets for treatment of spinal cord injury in mammals.
基金sponsored by the National Natural Science Foundation of China,No.81102595the Natural Science Foundation of Guangxi,No.2012GXNSFAA053113
文摘Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell differentiation into neurons. Mitogen-activated protein kinase signaling was identified as one of the key pathways underlying this differentiation process. The present study shows phosphorylated extracellular signal-regulated protein kinase and phosphorylated p38 protein expression was increased after differentiation. Cellular signaling pathway blocking agents, PD98059 and SB203580, inhibited extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways respectively, mRNA and protein expression of the neuronal marker, neuron specific enolase, and neural stem cell marker, nestin, were decreased in bone marrow mesenchymal stem cells after treatment with the active principle region of Buyang Huanwu decoction. Experimental findings indicate that, extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways participate in bone marrow mesenchymal stem cell differentiation into neuron-like cells, induced by the active principle region of Buyang Huanwu decoction.
基金the National Natural Science Foundation of China, No. 31070941 20831006 30770679
文摘Using neural pathway tracing and immunohistochemical technique, the striato-direct pathway (BDA3 kDa injected into the rat lateral globus pallidus) and striato-indirect pathway (BDA3 kDa injected into the substantia nigra pars reticulata) neurons were specifically labeled, and then subjected to double-labeled immunohistochemistry for mu-OPIOID Receptor (specifically-labeled striatal patch compartment), D1, and D2, respectively. The experimental findings showed that there are no statistically significant differences in the soma diameter and the number of primary dendrites between the striato-direct (substantia nigra pars reticularis) and indirect (globus pallidum externum) neurons labeled retrograde by BDA3 kDa. In addition, these two kinds of projection neurons revealed no obvious coexistence. This evidence indicates that as a highly sensitive neural pathway tracer, BDA could yield reliably and exquisitely detailed labeling of target neurons and synaptic structures. The variance of the morphologic structures and the localization of neurons were not statistically significant between the striato-substantia nigra pars reticularis and the globus pallidum externum projection neurons. Mesencephalic and thalamic neurons correlated with striatal neurons in morphology. Especially the latter which make typical excitatory synaptic contacts with striato-direct and -indirect neurons. Thus, this evidence suggests that thalamic neurons may extensively excite striatal neurons.
基金supported by the National Natural Science Foundation of China,Nos.81401002 (to SSZ),81801 053 (to XQZ)。
文摘Stromal cell-derived factor-1 and its receptor C-X-C chemokine receptor 4(CXCR4) have been shown to regulate neural regeneration after stroke.Howeve r,whether stromal cell-derived factor-1 receptor CXCR7,which is widely distributed in the develo ping and adult central nervous system,participates in neural regeneration remains poorly unde rstood.In this study,we established rat models of focal cerebral ischemia by injecting endothelin-1 into the cerebral co rtex and striatum.Starting on day 7 after injury,CXCR7-neutralizing antibody was injected into the lateral ventricle using a micro drug delivery system for 6 consecutive days.Our results showed that CXCR7-neutralizing antibody increased the total length and number of sprouting co rticospinal tra ct fibers in rats with cerebral ischemia,increased the expression of vesicular glutamate transporter 1 and growth-related protein 43,marke rs of the denervated spinal cord synapses,and promoted the differentiation and maturation of oligodendrocyte progenitor cells in the striatum.In addition,CXCR7 antibody increased the expression of CXCR4 in the striatum,increased the protein expression of RAS and ERK1/2 associated with the RAS/ERK signaling pathway,and im proved rat motor function.These findings suggest that CXCR7 improved neural functional recovery after ischemic stroke by promoting axonal regeneration,synaptogenesis,and myelin regeneration,which may be achieved by activation of CXCR4 and the RAS/ERK1/2 signaling pathway.
基金supported by the National Research Foundation (NRF) of Korea Grant funded by the Korean Government (MSIP),No.2015R1A2A2A01004073
文摘The corticoreticular pathway(CRP)mainly mediates proximal and axial muscles and therefore it is an important neural tract for walking(Miyai et al.,2002;Matsuyama et al.,2004;Mendoza and Foundas,2007).Diffusion tensor tractography(DTT),derived from diffusion tensor imaging(DTI),
基金National Natural Science Foundation of China(no.82260385 and 82260254)Health commission of Guizhou Province(gzwkj2022-103)+1 种基金Chinese Ministry of Education(no.2020-39)Science and Technology Project of Guizhou province(no.20204Y149 and 2023580).
文摘Purpose:Mannitol is one of the first-line drugs for reducing cerebral edema through increasing the extracellular osmotic pressure.However,long-term administration of mannitol in the treatment of cerebral edema triggers damage to neurons and astrocytes.Given that neural stem cell(NSC)is a subpopulation of main regenerative cells in the central nervous system after injury,the effect of mannitol on NSC is still elusive.The present study aims to elucidate the role of mannitol in NSC proliferation.Methods:C57 mice were derived from the animal house of Zunyi Medical University.A total of 15 pregnant mice were employed for the purpose of isolating NSCs in this investigation.Initially,mouse primary NSCs were isolated from the embryonic cortex of mice and subsequently identified through immunofluorescence staining.In order to investigate the impact of mannitol on NSC proliferation,both cell counting kit-8 assays and neurospheres formation assays were conducted.Thein vitro effects of mannitol were examined at various doses and time points.In order to elucidate the role of Aquaporin 4(AQP4)in the suppressive effect of mannitol on NSC proliferation,various assays including reverse transcription polymerase chain reaction,western blotting,and immunocytochemistry were conducted on control and mannitol-treated groups.Additionally,the phosphorylated p38(p-p38)was examined to explore the potential mechanism underlying the inhibitory effect of mannitol on NSC proliferation.Finally,to further confirm the involvement of the p38 mitogen-activated protein kinase-dependent(MAPK)signaling pathway in the observed inhibition of NSC proliferation by mannitol,SB203580 was employed.All data were analyzed using SPSS 20.0 software(SPSS,Inc.,Chicago,IL).The statistical analysis among multiple comparisons was performed using one-way analysis of variance(ANOVA),followed by Turkey’’s post hoc test in case of the data following a normal distribution using a Shapiro-Wilk normality test.Comparisons between 2 groups were determined using Student’s t-test,if the data exhibited a normal distribution using a Shapiro-Wilk normality test.Meanwhile,data were shown as median and interquartile range and analyzed using the Mann-WhitneyU test,if the data failed the normality test.A p<0.05 was considered as significant difference.Results:Primary NSC were isolated from the mice,and the characteristics were identified using immunostaining analysis.Thereafter,the results indicated that mannitol held the capability of inhibiting NSC proliferation in a dose-dependent and time-dependent manner using cell counting kit-8,neurospheres formation,and immunostaining of Nestin and Ki67 assays.During the process of mannitol suppressing NSC proliferation,the expression of AQP4 mRNA and protein was downregulated,while the gene expression of p-p38 was elevated by reverse transcription polymerase chain reaction,immunostaining,and western blotting assays.Subsequently,the administration of SB203580,one of the p38 MAPK signaling pathway inhibitors,partially abrogated this inhibitory effect resulting from mannitol,supporting the fact that the p38 MAPK signaling pathway participated in curbing NSC proliferation induced by mannitol.Conclusions:Mannitol inhibits NSC proliferation through downregulating AQP4,while upregulating the expression of p-p38 MAPK.
基金supported by the National Natural Science Foundation of China,Nos. 81760247, 82171450the Scientific Research Foundation for Doctors of the Affiliated Hospital of Zunyi Medical University,No.(2016)14 (all to HH)。
文摘Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target novel cellular and molecular mechanisms and mechanisms of action. Increasing evidence suggests that axon guidance molecules play a role in the structural and functional modifications of neural networks and that the dysregulation of these molecules is associated with epilepsy susceptibility. In this review, we discuss the essential role of axon guidance molecules in neuronal activity in patients with epilepsy as well as the impact of these molecules on synaptic plasticity and brain tissue remodeling. Furthermore, we examine the relationship between axon guidance molecules and neuroinflammation, as well as the structural changes in specific brain regions that contribute to the development of epilepsy. Ample evidence indicates that axon guidance molecules, including semaphorins and ephrins, play a fundamental role in guiding axon growth and the establishment of synaptic connections. Deviations in their expression or function can disrupt neuronal connections, ultimately leading to epileptic seizures. The remodeling of neural networks is a significant characteristic of epilepsy, with axon guidance molecules playing a role in the dynamic reorganization of neural circuits. This, in turn, affects synapse formation and elimination. Dysregulation of these molecules can upset the delicate balance between excitation and inhibition within a neural network, thereby increasing the risk of overexcitation and the development of epilepsy. Inflammatory signals can regulate the expression and function of axon guidance molecules, thus influencing axonal growth, axon orientation, and synaptic plasticity. The dysregulation of neuroinflammation can intensify neuronal dysfunction and contribute to the occurrence of epilepsy. This review delves into the mechanisms associated with the pathogenicity of axon guidance molecules in epilepsy, offering a valuable reference for the exploration of therapeutic targets and presenting a fresh perspective on treatment strategies for this condition.
基金the National Natural Science Foundation of China:Study on the Mechanism of Zhenxin Anshen Formula Regulating GRPR/MrgprA3/TRPs Signaling Pathway for Atop-ic Dermatitis based on the Theory of All Kinds of Diseases with PainItching+7 种基金and Sores are Exclusively Related to the HeartNo.81704087the Regulation of Zhenxin Anshen Formula on Neuroimmune Function in Atopic Dermatitis from STIM1-ORAI1 Mediated Store Oper-ated Calcium EntryNo.82274537Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences:Based on PAR2/TRPV1 Pathway to Regulate Nerve-Epidermal Pruritus Information Transmission to Explore the Mechanism of Longmu Decoction on“Stress-Type Atopic Dermatitis”MiceNo.CI2021A02315Belt and Road Initiative Cooperation Project of Traditional Chinese Medicine of the Chinese Academy of Traditional Chinese Medicine:Evaluation of the Effect of Chinese Medicine on Allergic Diseases and Material Basis ResearchNo.GH201910。
文摘OBJECTIVE:To investigate the efficacy of Zhenxin Anshen formula(镇心安神方,ZXAS)on atopic dermatitis(AD)by transient receptor potential vanilloid 1(TRPV1)and transient receptor potential ankyrin 1(TRPA1)signalling pathway in mice and in vitro.METHODS:AD-like lesions were induced by 1-chloro-2,4-dinitrobenzene(DNCB)to the shaved dorsal skin of BALB/c mice.BALB/c mice were divided into five groups:normal control,model control,cetirizine,low-,medium-,and high-dose of ZXAS.After ZXAS in-tervention,the skin lesions and blood samples were collected for hematoxylin and eosin-stained and measuring the concentrations of inflammatory cytokines.Immunoglobulin E(IgE),interleukin(IL)-4,IL-5,IL-13,and thymic stromal lymphopoietin(TSLP)were de-tected by Enzyme-linked immunosorbent assay(ELISA).The spinal cords were collected for measuring the expression of gastrin-releasing peptide receptor(GRPR),TRPV1,and TRPA1 by using immunohistochemistry,western blotting,and quantitative real-time polymerase chain reaction(qR T-PCR)analyses.In addition,3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide(MTT)assay,flow cytometry,ELISA,and Western blotting were conducted for analysis of primary dorsal root ganglia(DRG)neurons in vitro.RESULTS:ZXAS treatment improved DNCB-induced AD-like lesions through reducing dermatitis score,number of scratching and epidermal thickness,accompanied by the de-creased IgE and Th2 inflammatory cytokines.ZXAS also supressed the mRNA and protein expression of GRPR,TRPV1,and TRPA1 in the spinal cord.The medicated sera of ZXAS decreased capsaicin-induced Ca^(2+)influx and downregulated the expression of TRPV1,TRPA1,and phospholipase C in DRG neurons.CONCLUSIONS:The therapeutic effect of ZXAS on AD may be related to the regulation of TRPV1 and TRPA1 and inhibition of Ca^(2+)signals in neurons.
文摘Background: VANGL2 plays a variety of roles in various cellular processes, including tissue morphogenesis, asymmetric cell division, and nervous system development. There is currently a lack of systematic organization in the development and disease of the nervous system. Purpose: To explore the role of VANGL2 in the development of the nervous system and related diseases. Methods: Literature review and analysis of the role of VANGL2 in the development and disease of the nervous system. Results: VANGL2 defects lead to the development of the nervous system through the misconfiguration of various cells, which affects the development of the cochlea, the conduction of neural signals, and the development of nervous system-related diseases such as Alzheimer’s disease, GBM, Bohling-Opitz syndrome, and hydrocephalus. Conclusions: The VANGL2 gene is essential for nervous system development and its deficiency is linked to severe congenital conditions and various disorders, highlighting the need for more research on treatments for related gene defects.
基金supported by the National Natural Science Foundation of China,No.U1613228a grant from the Sub-Project under National “Twelfth Five-Year” Plan for Science & Technology Support Project in China,No.2011BAI08B11+1 种基金a grant from the Beijing Municipal Science & Technology Commission in China,No.Z161100002616018the Special Fund for Basic Scientific Research Business of Central Public Scientific Research Institutes in China,No.2014CZ-5,2015CZ-30
文摘Motor imagery is the mental representation of an action without overt movement or muscle activation. However, the effects of motor imagery on stroke-induced hand dysfunction and brain neural networks are still unknown. We conducted a randomized controlled trial in the China Rehabilitation Research Center. Twenty stroke patients, including 13 males and 7 females, 32–51 years old, were recruited and randomly assigned to the traditional rehabilitation treatment group(PP group, n = 10) or the motor imagery training combined with traditional rehabilitation treatment group(MP group, n = 10). All patients received rehabilitation training once a day, 45 minutes per session, five times per week, for 4 consecutive weeks. In the MP group, motor imagery training was performed for 45 minutes after traditional rehabilitation training, daily. Action Research Arm Test and the Fugl-Meyer Assessment of the upper extremity were used to evaluate hand functions before and after treatment. Transcranial magnetic stimulation was used to analyze motor evoked potentials in the affected extremity. Diffusion tensor imaging was used to assess changes in brain neural networks. Compared with the PP group, the MP group showed better recovery of hand function, higher amplitude of the motor evoked potential in the abductor pollicis brevis, greater fractional anisotropy of the right dorsal pathway, and an increase in the fractional anisotropy of the bilateral dorsal pathway. Our findings indicate that 4 weeks of motor imagery training combined with traditional rehabilitation treatment improves hand function in stroke patients by enhancing the dorsal pathway. This trial has been registered with the Chinese Clinical Trial Registry(registration number: Chi CTR-OCH-12002238).
基金supported by the National Natural Science Foundation of China,No.81101365,81171722 and 81000805
文摘Denervation often results in skeletal muscle atrophy.Different mechanisms seem to be involved in the determination between denervated slow and fast skeletal muscle atrophy.At the epigenetic level,mi RNAs are thought to be highly involved in the pathophysiological progress of denervated muscles.We used mi RNA microarrays to determine mi RNA expression profiles from a typical slow muscle(soleus muscle) and a typical fast muscle(tibialis anterior muscle) at an early denervation stage in a rat model.Results showed that mi R-206,mi R-195,mi R-23 a,and mi R-30 e might be key factors in the transformation process from slow to fast muscle in denervated slow muscles.Additionally,certain mi RNA molecules(mi R-214,mi R-221,mi R-222,mi R-152,mi R-320,and Let-7e) could be key regulatory factors in the denervated atrophy process involved in fast muscle.Analysis of signaling pathway networks revealed the mi RNA molecules that were responsible for regulating certain signaling pathways,which were the final targets(e.g.,p38 MAPK pathway; Pax3/Pax7 regulates Utrophin and follistatin by HDAC4; IGF1/PI3K/Akt/m TOR pathway regulates atrogin-1 and Mu RF1 expression via Fox O phosphorylation).Our results provide a better understanding of the mechanisms of denervated skeletal muscle pathophysiology.