Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patien...Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor func- tion test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action perfor- mance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH- 12002238).展开更多
The ability of the adult central nervous system to reorganize its circuits over time is the key to understand the functional improvement in subjects with spinal cord injury (SCI). Adaptive changes within spared neur...The ability of the adult central nervous system to reorganize its circuits over time is the key to understand the functional improvement in subjects with spinal cord injury (SCI). Adaptive changes within spared neuronal circuits may occur at cortical, brainstem, or spinal cord level, both above and below a spinal lesion (Bareyre et al., 2004). At each level the reorganization is a very dynamic process, and its degree is highly variable, depending on several factors, including the age of the subject when SCI has occurred and the rehabilitative therapy. The use of electrophysiological techniques to assess these functional changes in neural networks is of great interest, because invasive methodologies as employed in preclinical models can obviously not be used in clinical studies.展开更多
Studies have confirmed that low-frequency repetitive transcranial magnetic stimulation can decrease the activity of cortical neurons, and high-frequency repetitive transcranial magnetic stimulation can increase the ex...Studies have confirmed that low-frequency repetitive transcranial magnetic stimulation can decrease the activity of cortical neurons, and high-frequency repetitive transcranial magnetic stimulation can increase the excitability of cortical neurons. However, there are few studies concerning the use of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper-limb motor function after cerebral infarction. We hypothesized that different frequencies of repetitive transcranial magnetic stimulation in patients with cerebral infarction would produce different effects on the recovery of upper-limb motor function. This study enrolled 127 patients with upper-limb dysfunction during the subacute phase of cerebral infarction. These patients were randomly assigned to three groups. The low-frequency group comprised 42 patients who were treated with 1 Hz repetitive transcranial magnetic stimulation on the contralateral hemisphere primary motor cortex (M1). The high-frequency group comprised 43 patients who were treated with 10 Hz repetitive transcranial magnetic stimulation on ipsilateral M1. Finally, the sham group comprised 42 patients who were treated with 10 Hz of false stimulation on ipsilateral M1. A total of 135 seconds of stimulation was applied in the sham group and high-frequency group. At 2 weeks after treatment, cortical latency of motor-evoked potentials and central motor conduction time were significantly lower compared with before treatment. Moreover, motor function scores were significantly improved. The above indices for the low- and high-frequency groups were significantly different compared with the sham group. However, there was no significant difference between the low- and high-frequency groups. The results show that low- and high-frequency repetitive transcranial magnetic stimulation can similarly improve upper-limb motor function in patients with cerebral infarction.展开更多
Objective To study the activation changes of the brain in patients with amyotrophic lateral sclerosis (ALS) while executing sequential finger tapping movement using the method of blood oxygenation level dependent (...Objective To study the activation changes of the brain in patients with amyotrophic lateral sclerosis (ALS) while executing sequential finger tapping movement using the method of blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (tMRI). Methods Fifteen patients with definite or probable ALS and fifteen age and gender matched normal controls were enrolled. MRI was performed on a 3.0 Tesla scanner with standard headcoiL The functional images were acquired using a gradient echo single shot echo planar imaging (EPI) sequence. All patients and normal subjects executed sequential finger tapping movement at the frequency of 1-2 Hz during a block-design motor task. Structural MRI was acquired using a three-dimensional fast spoiled gradient echo (3D-FSPGR) sequence. The tMRI data were analyzed by statistical parametric mapping (SPM). Results Bilateral primary sensorimotor cortex ( PSM), bilateral premotor area ( PA), bilateral supplementary motor area (SMA), bilateral parietal region ( PAR), contralateral inferior lateral premotor area ( ILPA), and ipsilateral cerebellum showed activation in both ALS patients and normal controls when executing the same motor task. The activation areas in bilateral PSM, bilateral PA, bilateral SMA, and ipsilateral cerebellum were significantly larger in ALS patients than those in normal controls ( P 〈 0.05 ). Extra activation areas including ipsilateral ILPA, bilateral posterior limb of internal capsule, and contralateral cerebellum were only detected in ALS patients. Conclusions Similar activation areas are activated in ALS patients and normal subjects while executing the same motor task. The increased activation areas in ALS patients may represent neural reorganization, while the extra activation areas in ALS patients may indicate functional compensation.展开更多
Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstru...Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstruct the remaining neural network. In the motor system, such neural network remodeling is observed as a motor map reorganization. Because of its significant correlation with functional recovery, motor map reorganization has been regarded as a key phenomenon for functional recovery after stroke. Although the mechanism underlying motor map reorganization remains unclear, increasing evidence has shown a critical role for axonal remodeling in the corticospinal tract. In this study, we review previous studies investigating axonal remodeling in the corticospinal tract after stroke and discuss which mechanisms may underlie the stimulatory effect of rehabilitative training. Axonal remodeling in the corticospinal tract can be classified into three types based on the location and the original targets of corticospinal neurons, and it seems that all the surviving corticospinal neurons in both ipsilesional and contralesional hemisphere can participate in axonal remodeling and motor map reorganization. Through axonal remodeling, corticospinal neurons alter their output selectivity from a single to multiple areas to compensate for the lost function. The remodeling of the corticospinal axon is influenced by the extent of tissue destruction and promoted by various therapeutic interventions, including rehabilitative training. Although the precise molecular mechanism underlying rehabilitation-promoted axonal remodeling remains elusive, previous data suggest that rehabilitative training promotes axonal remodeling by upregulating growth-promoting and downregulating growth-inhibiting signals.展开更多
基金supported by the Sub-Project under National "Twelfth Five-Year" Plan for Science&Technology Support Project in China,No.2011BAI08B11the Research Project of China Rehabilitation Research Center,No.2014-3
文摘Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor func- tion test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action perfor- mance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH- 12002238).
文摘The ability of the adult central nervous system to reorganize its circuits over time is the key to understand the functional improvement in subjects with spinal cord injury (SCI). Adaptive changes within spared neuronal circuits may occur at cortical, brainstem, or spinal cord level, both above and below a spinal lesion (Bareyre et al., 2004). At each level the reorganization is a very dynamic process, and its degree is highly variable, depending on several factors, including the age of the subject when SCI has occurred and the rehabilitative therapy. The use of electrophysiological techniques to assess these functional changes in neural networks is of great interest, because invasive methodologies as employed in preclinical models can obviously not be used in clinical studies.
基金several colleague therapists of the Rehabilitation Medicine Department of the Affiliated Hospital of Qingdao University of China for their support and selfless help
文摘Studies have confirmed that low-frequency repetitive transcranial magnetic stimulation can decrease the activity of cortical neurons, and high-frequency repetitive transcranial magnetic stimulation can increase the excitability of cortical neurons. However, there are few studies concerning the use of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper-limb motor function after cerebral infarction. We hypothesized that different frequencies of repetitive transcranial magnetic stimulation in patients with cerebral infarction would produce different effects on the recovery of upper-limb motor function. This study enrolled 127 patients with upper-limb dysfunction during the subacute phase of cerebral infarction. These patients were randomly assigned to three groups. The low-frequency group comprised 42 patients who were treated with 1 Hz repetitive transcranial magnetic stimulation on the contralateral hemisphere primary motor cortex (M1). The high-frequency group comprised 43 patients who were treated with 10 Hz repetitive transcranial magnetic stimulation on ipsilateral M1. Finally, the sham group comprised 42 patients who were treated with 10 Hz of false stimulation on ipsilateral M1. A total of 135 seconds of stimulation was applied in the sham group and high-frequency group. At 2 weeks after treatment, cortical latency of motor-evoked potentials and central motor conduction time were significantly lower compared with before treatment. Moreover, motor function scores were significantly improved. The above indices for the low- and high-frequency groups were significantly different compared with the sham group. However, there was no significant difference between the low- and high-frequency groups. The results show that low- and high-frequency repetitive transcranial magnetic stimulation can similarly improve upper-limb motor function in patients with cerebral infarction.
基金Supported by National Natural Sciences Foundation of China(30470512)
文摘Objective To study the activation changes of the brain in patients with amyotrophic lateral sclerosis (ALS) while executing sequential finger tapping movement using the method of blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (tMRI). Methods Fifteen patients with definite or probable ALS and fifteen age and gender matched normal controls were enrolled. MRI was performed on a 3.0 Tesla scanner with standard headcoiL The functional images were acquired using a gradient echo single shot echo planar imaging (EPI) sequence. All patients and normal subjects executed sequential finger tapping movement at the frequency of 1-2 Hz during a block-design motor task. Structural MRI was acquired using a three-dimensional fast spoiled gradient echo (3D-FSPGR) sequence. The tMRI data were analyzed by statistical parametric mapping (SPM). Results Bilateral primary sensorimotor cortex ( PSM), bilateral premotor area ( PA), bilateral supplementary motor area (SMA), bilateral parietal region ( PAR), contralateral inferior lateral premotor area ( ILPA), and ipsilateral cerebellum showed activation in both ALS patients and normal controls when executing the same motor task. The activation areas in bilateral PSM, bilateral PA, bilateral SMA, and ipsilateral cerebellum were significantly larger in ALS patients than those in normal controls ( P 〈 0.05 ). Extra activation areas including ipsilateral ILPA, bilateral posterior limb of internal capsule, and contralateral cerebellum were only detected in ALS patients. Conclusions Similar activation areas are activated in ALS patients and normal subjects while executing the same motor task. The increased activation areas in ALS patients may represent neural reorganization, while the extra activation areas in ALS patients may indicate functional compensation.
基金supported by the JSPSKAKENHI Grant-in-Aid for Scientific Research(B),Grant Numbers24700572 and 30614276
文摘Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstruct the remaining neural network. In the motor system, such neural network remodeling is observed as a motor map reorganization. Because of its significant correlation with functional recovery, motor map reorganization has been regarded as a key phenomenon for functional recovery after stroke. Although the mechanism underlying motor map reorganization remains unclear, increasing evidence has shown a critical role for axonal remodeling in the corticospinal tract. In this study, we review previous studies investigating axonal remodeling in the corticospinal tract after stroke and discuss which mechanisms may underlie the stimulatory effect of rehabilitative training. Axonal remodeling in the corticospinal tract can be classified into three types based on the location and the original targets of corticospinal neurons, and it seems that all the surviving corticospinal neurons in both ipsilesional and contralesional hemisphere can participate in axonal remodeling and motor map reorganization. Through axonal remodeling, corticospinal neurons alter their output selectivity from a single to multiple areas to compensate for the lost function. The remodeling of the corticospinal axon is influenced by the extent of tissue destruction and promoted by various therapeutic interventions, including rehabilitative training. Although the precise molecular mechanism underlying rehabilitation-promoted axonal remodeling remains elusive, previous data suggest that rehabilitative training promotes axonal remodeling by upregulating growth-promoting and downregulating growth-inhibiting signals.