A fully-differential bandpass CMOS (complementary metal oxide semiconductor) preamplifier for extra- cellular neural recording is presented. The capacitive-coupled and capacitive-feedback topology is adopted. The pr...A fully-differential bandpass CMOS (complementary metal oxide semiconductor) preamplifier for extra- cellular neural recording is presented. The capacitive-coupled and capacitive-feedback topology is adopted. The preamplifier has a midband gain of 20.4 dB and a DC gain of 0. The -3 dB upper cut-off frequency of the preamplifier is 6.7 kHz. The lower cut-off frequency can be adjusted for amplifying the field or action potentials located in different bands. It has an input-referred noise of 8.2 μVrms integrated from 0.15 Hz to 6.7 kHz for recording the local field potentials and the mixed neural spikes with a power dissipation of 23.1μW from a 3.3 V supply. A bandgap reference circuitry is also designed for providing the biasing voltage and current. The 0.22 mm2 prototype chip, including the preamplifier and its biasing circuitry, is fabricated in the 0.35-μm N-well CMOS 2P4M process.展开更多
Recent work in the field ofneurophysiology has demonstrated that, by observing the firing characteristic of action potentials (AP) and the exchange pattern of signals between neurons, it is possible to reveal the na...Recent work in the field ofneurophysiology has demonstrated that, by observing the firing characteristic of action potentials (AP) and the exchange pattern of signals between neurons, it is possible to reveal the nature of "memory" and "thinking" and help humans to understand how the brain works. To address these needs, we developed a prototype fully integrated circuit (IC) with micro-electrode array (MEA) for neural recording. In this scheme, the microelectrode array is composed by 64 detection electrodes and 2 reference electrodes. The proposed IC consists of 8 recording channels with an area of 5 x 5 mm2. Each channel can operate independently to process the neural signal by amplifying, filtering, etc. The chip is fabricated in 0.5-#m CMOS technology. The simulated and measured results show the system provides an effective device for recording feeble signal such as neural signals.展开更多
基金supported by the National Natural Science Foundation of China(Nos.60776024,60877035,60976026,90820002)the National High Technology Research and Development Program of China(Nos.2007AA04Z329,2007AA04Z254).
文摘A fully-differential bandpass CMOS (complementary metal oxide semiconductor) preamplifier for extra- cellular neural recording is presented. The capacitive-coupled and capacitive-feedback topology is adopted. The preamplifier has a midband gain of 20.4 dB and a DC gain of 0. The -3 dB upper cut-off frequency of the preamplifier is 6.7 kHz. The lower cut-off frequency can be adjusted for amplifying the field or action potentials located in different bands. It has an input-referred noise of 8.2 μVrms integrated from 0.15 Hz to 6.7 kHz for recording the local field potentials and the mixed neural spikes with a power dissipation of 23.1μW from a 3.3 V supply. A bandgap reference circuitry is also designed for providing the biasing voltage and current. The 0.22 mm2 prototype chip, including the preamplifier and its biasing circuitry, is fabricated in the 0.35-μm N-well CMOS 2P4M process.
基金supported by the National Natural Science Foundation of China(No.61076118)
文摘Recent work in the field ofneurophysiology has demonstrated that, by observing the firing characteristic of action potentials (AP) and the exchange pattern of signals between neurons, it is possible to reveal the nature of "memory" and "thinking" and help humans to understand how the brain works. To address these needs, we developed a prototype fully integrated circuit (IC) with micro-electrode array (MEA) for neural recording. In this scheme, the microelectrode array is composed by 64 detection electrodes and 2 reference electrodes. The proposed IC consists of 8 recording channels with an area of 5 x 5 mm2. Each channel can operate independently to process the neural signal by amplifying, filtering, etc. The chip is fabricated in 0.5-#m CMOS technology. The simulated and measured results show the system provides an effective device for recording feeble signal such as neural signals.