期刊文献+
共找到548篇文章
< 1 2 28 >
每页显示 20 50 100
Noggin versus basic fibroblast growth factor on the differentiation of human embryonic stem cells 被引量:2
1
作者 Yan Zhang Junmei Zhou +2 位作者 Zhenfu Fang Manxi Jiang Xuejin Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第23期2171-2177,共7页
The difference between Noggin and basic fibroblast growth factor for the neural precursor differen- tiation from human embryonic stem cells has not been studied. In this study, 100 tJg/L Noggin or 20 IJg/L basic fibro... The difference between Noggin and basic fibroblast growth factor for the neural precursor differen- tiation from human embryonic stem cells has not been studied. In this study, 100 tJg/L Noggin or 20 IJg/L basic fibroblast growth factor in serum-free neural induction medium was used to differen- tiate human embryonic stem cells H14 into neural precursors using monolayer differentiation. Two weeks after induction, significantly higher numbers of neural rosettes formed in the Noggin-induced group than the basic fibroblast growth factor-induced group, as detected by phase contrast micro- scope. Immunofluorescence staining revealed expression levels of Nestin, [3-111 Tubulin and Sox-1 were higher in the induced cells and reverse-transcription PCR showed induced cells expressed Nestin, Sox-1 and Neurofilament mRNA. Protein and mRNA expression in the Noggin-induced group was increased compared with the basic fibroblast growth factor-induced group. Noggin has a greater effect than basic fibroblast growth factor on the induction of human embryonic stem cell differentiation into neural precursors by monolayer differentiation, as Noggin accelerates and in- creases the differentiation of neural precursors. 展开更多
关键词 neural regeneration stem cells basic fibroblast growth factor NOGGIN human embryonic stem cells neural precursors neural differentiation grants-supported paper NEUROREGENERATION
下载PDF
Response of the sensorimotor cortex of cerebral palsy rats receiving transplantation of vascular endothelial growth factor 165-transfected neural stem cells 被引量:4
2
作者 Jielu Tan Xiangrong Zheng +4 位作者 Shanshan Zhang Yujia Yang Xia Wang Xiaohe Yu Le Zhong 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第19期1763-1769,共7页
Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge- nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats w... Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge- nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats with hypoxic-ischemic encephalopathy. Transplantation of vascular endothelial growth factor-transfected neural stem cells may be neuroprotective in rats with cerebral palsy. In this study, 7-day-old Sprague-Dawley rats were divided into five groups: (1) sham operation (control), (2) cerebral palsy model alone or with (3) phosphate-buffered saline, (4) vascular en- dothelial growth factor 165 + neural stem cells, or (5) neural stem cells alone. The cerebral palsy model was established by ligating the left common carotid artery followed by exposure to hypox- ia. Phosphate-buffered saline, vascular endothelial growth factor + neural stem cells, and neural stem cells alone were administered into the sensorimotor cortex using the stereotaxic instrument and microsyringe. After transplantation, the radial-arm water maze test and holding test were performed. Immunohistochemistry for vascular endothelial growth factor and histology using hematoxylin-eosin were performed on cerebral cortex. Results revealed that the number of vas- cular endothelial growth factor-positive cells in cerebral palsy rats transplanted with vascular endothelial growth factor-transfected neural stem cells was increased, the time for finding water and the finding repetitions were reduced, the holding time was prolonged, and the degree of cell degeneration or necrosis was reduced. These findings indicate that the transplantation of vascu- lar endothelial growth factor-transfected neural stem cells alleviates brain damage and cognitive deficits, and is neuroprotective in neonatal rats with hypoxia ischemic-mediated cerebral palsy. 展开更多
关键词 nerve regeneration vascular endothelial growth factor neural stem cells cerebral palsy animal model TRANSPLANTATION NEUROPROTECTION NSFC grant neural regeneration
下载PDF
Lentiviral-mediated vascular endothelial growth factor 165 gene transfer into neural stem cells promotes proliferation 被引量:1
3
作者 Shanshan Zhang Xiangrong Zheng Fei Yin Jielu Tan Yujia Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第19期1457-1461,共5页
We constructed a lentiviral vector carrying vascular endothelial growth factor 165, which was used to transfect neural stem cells. The transfection rate was approximately 50%, as determined by flow cytometry. Vascular... We constructed a lentiviral vector carrying vascular endothelial growth factor 165, which was used to transfect neural stem cells. The transfection rate was approximately 50%, as determined by flow cytometry. Vascular endothelial growth factor protein was detected in neural stem cells and promoted proliferation. 展开更多
关键词 vascular endothelial growth factor 165 gene therapy LENTIVIRUS neural stem cells TRANSFECTION
下载PDF
Directional induction of dopaminergic neurons from neural stem cells using substantia nigra homogenates and basic fibroblast growth factor
4
作者 Jintao Li Qi Yan +2 位作者 Yiliu Ma Zhongtang Feng Tinghua Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第7期511-516,共6页
To date, complex components of available reagents have been used for directional induction of neural stem cells into dopaminergic neurons, resulting in a poor ability to repeat experiments. This study sought to invest... To date, complex components of available reagents have been used for directional induction of neural stem cells into dopaminergic neurons, resulting in a poor ability to repeat experiments. This study sought to investigate whether a homogenate of the substantia nigra of adult rats and/or basic fibroblast growth factor could directionally induce neural stem cells derived from the subventricular zone of embryonic rats to differentiate into dopaminergic neurons. Tyrosine hydroxylase-positive cells were observed exclusively after induction with the homogenate supernatant of the substantia nigra from adult rats and basic fibroblast growth factor for 48 hours in vitro. However, in the groups treated with homogenate supernatant or basic fibroblast growth factor alone, tyrosine hydroxylase expression was not observed. Moreover, the content of dopamine in the culture medium of subventricular zone neurons was significantly increased at 48 hours after induction with the homogenate supernatant of the substantia nigra from adult rats and basic fibroblast growth factor. Experimental findings indicate that the homogenate supernatant of the substantia nigra from adult rats and basic fibroblast growth factor could directionally induce neural stem cells derived from the subventricular zone of embryonic rats to differentiate into dopaminergic neurons in the substantia nigra with the ability to secrete dopamine. 展开更多
关键词 directional induction in vitro homogenate of substantia nigra basic fibroblast growth factor subventricular zone neural stem cells dopaminergic neurons
下载PDF
Basic fibroblast growth factor increases the numbe of endogenous neural stem cells and inhibits the expression of amino methyl isoxazole propionic acid receptors in amyotrophic lateral sclerosis mice
5
作者 Weihui Huang Dawei Zang Yi Lu Ping Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第10期761-765,共5页
This study aimed to investigate the number of amino methyl isoxazole propionic acid (AMPA) receptors and production of endogenous neural stem cells in the SOD1 G93AG1H transgenic mouse model of amyotrophic lateral s... This study aimed to investigate the number of amino methyl isoxazole propionic acid (AMPA) receptors and production of endogenous neural stem cells in the SOD1 G93AG1H transgenic mouse model of amyotrophic lateral sclerosis, at postnatal day 60 following administration of basic fibroblast growth factor (FGF-2). A radioligand binding assay and immunohistochemistry were used to estimate the number of AMPA receptors and endogenous neural stem cells respectively. Results showed that the number of AMPA receptors and endogenous neural stem cells in the brain stem and sensorimotor cortex were significantly increased, while motor function was significantly decreased at postnatal days 90 and 120. After administration of FGF-2 into mice, numbers of endogenous neural stem cells increased, while expression of AMPA receptors decreased, whilst motor functions were recovered. At postnatal day 120, the number of AMPA receptors was negatively correlated with the number of endogenous neural stem cells in model mice and FGF-2-treated mice. Our experimental findings indicate that FGF-2 can inhibit AMPA receptors and increase the number of endogenous neural stem cells, thus repairing neural injury in amyotrophic lateral sclerosis mice. 展开更多
关键词 amino methyl isoxazole propionic acid receptor amyotrophic lateral sclerosis basic fibroblast growth factor endogenous neural stem cells
下载PDF
Early expressions of hypoxia-inducible factor 1alpha and vascular endothelial growth factor increase the neuronal plasticity of activated endogenous neural stem cells after focal cerebral ischemia 被引量:18
6
作者 Seung Song Jong-Tae Park +4 位作者 Joo Young Na Man-Seok Park Jeong-Kil Lee Min-Cheol Lee Hyung-Seok Kim 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第9期912-918,共7页
Endogenous neural stem cells become "activated" after neuronal injury, but the activation sequence and fate of endogenous neural stem cells in focal cerebral ischemia model are little known. We evaluated the relatio... Endogenous neural stem cells become "activated" after neuronal injury, but the activation sequence and fate of endogenous neural stem cells in focal cerebral ischemia model are little known. We evaluated the relationships between neural stem cells and hypoxia-inducible factor-1α and vascular endothelial growth factor expression in a photothromobotic rat stroke model using immunohistochemistry and western blot analysis. We also evaluated the chronological changes of neural stem cells by 5-bromo-2′-deoxyuridine(BrdU) incorporation. Hypoxia-inducible factor-1α expression was initially increased from 1 hour after ischemic injury, followed by vascular endothelial growth factor expression. Hypoxia-inducible factor-1α immunoreactivity was detected in the ipsilateral cortical neurons of the infarct core and peri-infarct area. Vascular endothelial growth factor immunoreactivity was detected in bilateral cortex, but ipsilateral cortex staining intensity and numbers were greater than the contralateral cortex. Vascular endothelial growth factor immunoreactive cells were easily found along the peri-infarct area 12 hours after focal cerebral ischemia. The expression of nestin increased throughout the microvasculature in the ischemic core and the peri-infarct area in all experimental rats after 24 hours of ischemic injury. Nestin immunoreactivity increased in the subventricular zone during 12 hours to 3 days, and prominently increased in the ipsilateral cortex between 3–7 days. Nestin-labeled cells showed dual differentiation with microvessels near the infarct core and reactive astrocytes in the peri-infarct area. BrdU-labeled cells were increased gradually from day 1 in the ipsilateral subventricular zone and cortex, and numerous BrdU-labeled cells were observed in the peri-infarct area and non-lesioned cortex at 3 days. BrdU-labeled cells rather than neurons, were mainly co-labeled with nestin and GFAP. Early expressions of hypoxia-inducible factor-1α and vascular endothelial growth factor after ischemia made up the microenvironment to increase the neuronal plasticity of activated endogenous neural stem cells. Moreover, neural precursor cells after large-scale cortical injury could be recruited from the cortex nearby infarct core and subventricular zone. 展开更多
关键词 nerve regeneration brain ischemia neural stem cell neural precursor cell hypoxia-inducible factor vascular endothelial growth factor MICROENVIRONMENT PHOTOTHROMBOSIS neural regeneration
下载PDF
Effects of basic fibroblast growth factor on beta-catenin protein and mRNA expression during the proliferation of endogenous neural stem cells following focal cerebral ischemia 被引量:1
7
作者 Xuesong Xing Weili Lü Liguang Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第2期111-117,共7页
BACKGROUND: The Wnt/β-catenin signaling pathway plays an important role in neural development. ,β-catenin is an important component of the Wnt/β-catenin signaling pathway. The Wnt signaling pathway has been shown ... BACKGROUND: The Wnt/β-catenin signaling pathway plays an important role in neural development. ,β-catenin is an important component of the Wnt/β-catenin signaling pathway. The Wnt signaling pathway has been shown to regulate the interaction of neural stem cells with the extracellular matrix. OBJECTIVE: To investigate the effects of basic fibroblast growth factor (bFGF) on β-catenin protein and mRNA expression, and on hippocampal neural stem cell proliferation in a rat model of cerebral ischemia/reperfusion. DESIGN, TIME AND SETTING: A randomized, controlled, neurobiology experiment was performed in Shenyang Medical College between August 2006 and August 2008. MATERIALS: A total of 72 healthy male Wistar rats, aged 3 months, were used in this study. bFGF was provided by Beijing SL Pharmaceutical Co.,Ltd., China. METHODS: Rats were randomly divided into 3 groups: sham-operated, ischemia/reperfusion, and bFGF-treated (n = 24 per group). Focal cerebral ischemia/reperfusion was induced in rats from the ischemia/reperfusion group and the bFGF-treated group by 2 hour right middle cerebral artery occlusion and 2 hour restoration of blood flow using the suture method. The ischemia/reperfusion and bFGF-treated groups were intraperitoneally administered 500 IU/mL of bFGF, or the same volume of physiological saline, once a day at postoperative days 1 3, and once every 3 days thereafter. Simultaneously, the sham-operated group underwent experimental procedures identical to the ischemia/reperfusion and bFGF-treated groups, with the exception of ischemia/reperfusion induction and drug administration. At 2 hours, 2, 6, 13, and 20 days after ischemiaJreperfusion induction, 50 mg/kg bromodeoxyuridine (BrdU) was administered to each group, twice daily, to label proliferating neural stem cells. MAIN OUTCOME MEASURES: The effects of bFGF on BrdU labeling, and ,8 -catenin mRNA and protein expression, in neural stem cells were examined by immunohistochemistry, Western blot, RT-PCR, and in situ hybridization techniques. RESULTS: In the sham-operated group, only a few BrdU-immunoreactive neural stem cells were found. In the ischemia/reperfusion group, BrdU-immunoreactive cells began to increase from 3 days after ischemia/reperfusion induction, reached a peak level at 7 days, and gradually reduced from 21 days. At 3, 7, 14, and 21 days after ischemia/reperfusion induction, the numbers of BrdU-immunoreactive cells were significantly greater in the bFGF-treated group than in the ischemia/reperfusion group. The sham-operated group exhibited slight expression of β-catenin and β-catenin mRNA. In the ischemia/reperfusion group, the expression of β-catenin and β-catenin mRNA gradually increased with reperfusion time, peaked at 14 days after reperfusion, and gradually decreased thereafter; by 21 days, the expression was markedly lower. Following bFGF injection, the expression of hippocampal BrdU, β-catenin, and β-catenin mRNA had apparently increased in each group. CONCLUSION: bFGF promotes neural stem cell proliferation, and the expression of β-catenin and β-catenin mRNA in the ischemic brain tissue. These findings indicate that bFGF promotion of neural stem cell proliferation may be mediated by Wnt/β-catenin signaling pathway. 展开更多
关键词 basic fibroblast growth factor Β-CATENIN neural stem cell PROLIFERATION rats
下载PDF
Transplantation of vascular endothelial growth factor-modified neural stem/progenitor cells promotes the recovery of neurological function following hypoxic-ischemic brain damage 被引量:12
8
作者 Yue Yao Xiang-rong Zheng +4 位作者 Shan-shan Zhang Xia Wang Xiao-he Yu Jie-lu Tan Yu-jia Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第9期1456-1463,共8页
Neural stem/progenitor cell (NSC) transplantation has been shown to effectively improve neurological function in rats with hypoxic-isch- emic brain damage. Vascular endothelial growth factor (VEGF) is a signaling ... Neural stem/progenitor cell (NSC) transplantation has been shown to effectively improve neurological function in rats with hypoxic-isch- emic brain damage. Vascular endothelial growth factor (VEGF) is a signaling protein that stimulates angiogenesis and improves neural regeneration. We hypothesized that transplantation of VEGF-transfected NSCs would alleviate hypoxic-ischemic brain damage in neo- natal rats. We produced and transfected a recombinant lentiviral vector containing the VEGF165gene into cultured NSCs. The transfected NSCs were transplanted into the left sensorimotor cortex of rats 3 days after hypoxic-ischemic brain damage. Compared with the NSCs group, VEGF mRNA and protein expression levels were increased in the transgene NSCs group, and learning and memory abilities were significantly improved at 30 days. Furthermore, histopathological changes were alleviated in these animals. Our findings indicate that transplantation of VEGF-transfected NSCs may facilitate the recovery of neurological function, and that its therapeutic effectiveness is better than that of unmodified NSCs. 展开更多
关键词 nerve regeneration vascular endothelial growth factor TRANSFECTION neural stem/progenitor cells TRANSPLANTATION hypoxic-ischemicbrain damage cerebral cortex animal model NEUROPROTECTION neural regeneration
下载PDF
Overexpression of vascular endothelial growth factor enhances the neuroprotective effects of bone marrow mesenchymal stem cell transplantation in ischemic stroke 被引量:2
9
作者 Cui Liu Zhi-Xiang Yang +6 位作者 Si-Qi Zhou Ding Ding Yu-Ting Hu Hong-Ning Yang Dong Han Shu-Qun Hu Xue-Mei Zong 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1286-1292,共7页
Although bone marrow mesenchymal stem cells(BMSCs)might have therapeutic potency in ischemic stroke,the benefits are limited.The current study investigated the effects of BMSCs engineered to overexpress vascular endot... Although bone marrow mesenchymal stem cells(BMSCs)might have therapeutic potency in ischemic stroke,the benefits are limited.The current study investigated the effects of BMSCs engineered to overexpress vascular endothelial growth factor(VEGF)on behavioral defects in a rat model of transient cerebral ischemia,which was induced by middle cerebral artery occlusion.VEGF-BMSCs or control grafts were injected into the left striatum of the infarcted hemisphere 24 hours after stroke.We found that compared with the stroke-only group and the vehicle-and BMSCs-control groups,the VEGF-BMSCs treated animals displayed the largest benefits,as evidenced by attenuated behavioral defects and smaller infarct volume 7 days after stroke.Additionally,VEGF-BMSCs greatly inhibited destruction of the blood-brain barrier,increased the regeneration of blood vessels in the region of ischemic penumbra,and reducedneuronal degeneration surrounding the infarct core.Further mechanistic studies showed that among all transplant groups,VEGF-BMSCs transplantation induced the highest level of brain-derived neurotrophic factor.These results suggest that BMSCs transplantation with vascular endothelial growth factor has the potential to treat ischemic stroke with better results than are currently available. 展开更多
关键词 bone marrow mesenchymal stem cell brain-derived neurotrophic factor CD31 microtubule associated protein 2 middle cerebral artery occlusion stroke transplantation vascular endothelial growth factor
下载PDF
Neuron-specific enolase expression in a rat model of radiation-induced brain injury following vascular endothelial growth factor-modified neural stem cell transplantation 被引量:1
10
作者 Songhua Xiao Chaohui Duan +4 位作者 Qingyu Shen Yigang Xing Ying Peng Enxiang Tao Jun Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第10期739-743,共5页
BACKGROUND: Previous studies have shown that transplantation of vascular endothelial growth factor (VEGF)-modified neural stem cells (NSC) provides better outcomes, compared with neural stem cells, in the treatme... BACKGROUND: Previous studies have shown that transplantation of vascular endothelial growth factor (VEGF)-modified neural stem cells (NSC) provides better outcomes, compared with neural stem cells, in the treatment of brain damage. OBJECTIVE: To compare the effects of VEGF-modified NSC transplantation and NSC transplantation on radiation-induced brain injury, and to determine neuron-specific enolase (NSE) expression in the brain. DESIGN, TIME, AND SETTING: The randomized, controlled study was performed at the Linbaixin Experimental Center, Second Affiliated Hospital, Sun Yat-sen University, China from November 2007 to October 2008. MATERIALS: VEGF-modified C17.2 NSCs were supplied by Harvard Medical School, USA. Streptavidin-biotin-peroxidase-complex kit (Boster, China) and 5, 6-carboxyfluorescein diacetate succinimidyl ester (Fluka, USA) were used in this study. METHODS: A total of 84 Sprague Dawley rats were randomly assigned to a blank control group (n = 20), model group (n = 20), NSC group (n = 20), and a VEGF-modified NSC group (n = 24). Rat models of radiation-induced brain injury were established in the model, NSC, and VEGF-modified NSC groups. At 1 week following model induction, 10 pL (5 ×10^4 cells/μL) VEGF-modified NSCs or NSCs were respectively infused into the striatum and cerebral cortex of rats from the VEGF-modified NSC and NSC groups. A total of 10μL saline was injected into rats from the blank control and model groups. MAIN OUTCOME MEASURES: NSE expression in the brain was detected by immunohistochemistry following VEGF-modified NSC transplantation. RESULTS: NSE expression was significantly decreased in the brains of radiation-induced brain injury rats (P 〈 0.05). The number of NSE-positive neurons significantly increased in the NSC and VEGF-modified NSC groups, compared with the model group (P 〈 0.05). NSE expression significantly increased in the VEGF-modified NSC group, compared with the NSC group, at 6 weeks following transplantation (P 〈 0.05). CONCLUSION: VEGF-modified NSC transplantation increased NSE expression in rats with radiation-induced brain injury, and the outcomes were superior to NSC transplantation. 展开更多
关键词 vascular endothelial growth factor neuron-specific enolase neural stem cells radiation-induced brain injury
下载PDF
Changes in expression and secretion patterns of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway molecules during murine neural stem/progenitor cell differentiation in vitro 被引量:4
11
作者 Jiang Lu Kehuan Lu Dongsheng Li 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第22期1688-1694,共7页
In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differ... In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differentiation from embryonic Sprague-Dawley rats or embryonic Kunming species mice, using fluorescent quantitative reverse transcription-PCR and western blot analyses. Results demonstrated that the dynamic expression of fibroblast growth factor 8 was similar to fibroblast growth factor receptor 1 expression but not to other fibroblast growth factor receptors. Enzyme-linked immunosorbent assay demonstrated that fibroblast growth factor 8 and Sonic Hedgehog signaling pathway protein factors were secreted by neural cells into the intercellular niche. Our experimental findings indicate that fibroblast growth factor 8 and Sonic Hedgehog expression may be related to the differentiation of neural stem/progenitor cells. 展开更多
关键词 neural stem cells neural progenitor cells fibroblast growth factor 8 Sonic Hedgehog signalpathway SECRETION dynamic DIFFERENTIATION NEURONS neural regeneration
下载PDF
Effects of leukemia inhibitory factor and basic fibroblast growth factor on free radicals and endogenous stem cell proliferation in a mouse model of cerebral infarction 被引量:2
12
作者 Weihui Huang Yadan Li +2 位作者 Yufeng Lin Xue Ye Dawei Zang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第19期1469-1474,共6页
The present study established a mouse model of cerebral infarction by middle cerebral artery occlusion, and monitored the effect of 25 tJg/kg leukemia inhibitory factor and (or) basic fibroblast growth factor admini... The present study established a mouse model of cerebral infarction by middle cerebral artery occlusion, and monitored the effect of 25 tJg/kg leukemia inhibitory factor and (or) basic fibroblast growth factor administration 2 hours after model establishment. Results showed that following administration, the number of endogenous neural stem cells in the infarct area significantly increased, malondialdehyde content in brain tissue homogenates significantly decreased, nitric oxide content, glutathione peroxidase and superoxide dismutase activity significantly elevated, and mouse motor function significantly improved as confirmed by the rotarod and bar grab tests. In particular, the effect of leukemia inhibitory factor in combination with basic fibroblast growth factor was the most significant. Results indicate that leukemia inhibitory factor and basic fibroblast growth factor can improve the microenvironment after cerebral infarction by altering free radical levels, improving the quantity of endogenous neural stem cells, and promoting neurological function of mice with cerebral infarction. 展开更多
关键词 leukemia inhibitory factor basic fibroblast growth factor endogenous neural stem cells free radical MALONDIALDEHYDE nitric oxide glutathione peroxidase superoxide dismutase NEUROPROTECTION
下载PDF
High-concentration sevoflurane exposure in mid-gestation induces apoptosis of neural stem cells in rat offspring 被引量:4
13
作者 Yuan Wang Shao-Wei Yin +1 位作者 Nan Zhang Ping Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第9期1575-1584,共10页
Sevoflurane is the most commonly used volatile anesthetic during pregnancy.The viability of neural stem cells directly affects the development of the brain.However,it is unknown whether the use of sevoflurane during t... Sevoflurane is the most commonly used volatile anesthetic during pregnancy.The viability of neural stem cells directly affects the development of the brain.However,it is unknown whether the use of sevoflurane during the second trimester affects the survival of fetal neural stem cells.Therefore,in this study,we investigated whether exposure to sevoflurane in mid-gestation induces apoptosis of neural stem cells and behavioral abnormalities.On gestational day 14,pregnant rats were anesthetized with 2% or 3.5% sevoflurane for 2 hours.The offspring were weaned at 28 days and subjected to the Morris water maze test.The brains were harvested to examine neural stem cell apoptosis by immunofluorescence and to measure Nestin and SOX-2 levels by western blot assay at 6,24 and 48 hours after anesthesia as well as on postnatal day(P) 0,14 and 28.Vascular endothelial growth factor(VEGF) and phosphoinositide 3-kinase(PI3 K)/AKT pathway protein levels in fetal brain at 6 hours after anesthesia were assessed by western blot assay.Exposure to high-concentration(3.5%) sevoflurane during mid-gestation increased escape latency and path length to the platform,and it reduced the average duration spent in the target quadrant and platform crossing times.At 6,24 and 48 hours after anesthesia and at P0,P14 and P28,the percentage of Nestin/terminal deoxynucleotidyl transferase d UTP nick end labeling(TUNEL)-positive cells was increased,but Nestin and SOX-2 protein levels were decreased in the hippocampus of the offspring.At 6 hours after anesthesia,VEGF,PI3 K and phospho-AKT(p-AKT) levels were decreased in the fetal brain.These changes were not observed in animals given low-concentration(2%) sevoflurane exposure.Together,our findings indicate that exposure to a high concentration of sevoflurane(3.5%) in mid-gestation decreases VEGF,PI3 K and p-AKT protein levels and induces neural stem cell apoptosis,thereby causing learning and memory dysfunction in the offspring. 展开更多
关键词 nerve regeneration SEVOFLURANE neural stem cells APOPTOSIS vascular endothelial growth factor PI3K P-AKT ANESTHESIA learning memory developmental neurobiology neural regeneration
下载PDF
Combinatorial effects of NaomaiYihao Capsules(脑脉一号胶囊) and vascular endothelial growth factor gene-transfected bone marrow mesenchymal stem cells on angiogenesis in cerebral ischemic tis sues in rats 被引量:8
14
作者 郭建文 陈朝 +1 位作者 黄燕 黎奔 《Journal of Traditional Chinese Medicine》 SCIE CAS CSCD 2012年第1期87-92,共6页
OBJECTIVE:To investigate the combinatorial effects of Naomai Yihao(NMYH) Capsules(脑脉一号胶囊) and vascular endothelial growth factor(VEGF) gene-transfected bone marrow mesenchymal stem cells(BMSCs) on angiogenesis i... OBJECTIVE:To investigate the combinatorial effects of Naomai Yihao(NMYH) Capsules(脑脉一号胶囊) and vascular endothelial growth factor(VEGF) gene-transfected bone marrow mesenchymal stem cells(BMSCs) on angiogenesis in cerebral ischemic tissues in rats and the mechanism.METHOD:BMSCs were isolated and cultured from bone marrow by an adherence method.Then,BMSCs were transfected with the eukaryotic expression plasmid pEGFP-VEGF 165 by positive ionic liposome transfection.A rat model of middle cerebral artery occlusion(MCAO) was established.Rats were allocated to six groups:model,BMSC,VEGF gene-transfected BMSC transplantation(BMSC/VEGF),NMYH,combined NMYH and BMSC/VEGF(combined treatment group) and sham operation groups.The behavioral rating score(BRS) of rat and the expression of CD34 and VEGF in brain tis sue were measured by immunohistochemistry on days 7,14 and 21 after reperfusion.Angiogenesi was observed and evaluated with laser scanning confocal microscopy.RESULTS:The BRS of rats in NMYH,BMSC transplan tation and combined treatment groups was significantly lower than that of the model group(P< 0.001),with no significant difference between NMYH and transplantation groups(P=0.619).The expression of CD34 andVEGF in NMYH,transplanta tion and combined treatment groups increased(P< 0.001),with a significant difference between NMYH and transplantation groups(P<0.001).The blood vessel area in NMYH,transplantation and com bined treatment groups was significantly increased(P<0.05),without a significant difference between NMYH and transplantation groups(P=0.873).CONCLUSIONS:VEGF gene-transfected BMSCs im prove angiogenesis in the cerebral ischemic area NMYH Capsules promote angiogenesis in MCAO rats treated with BMSC transplantation,which show an improved BRS.The mechanism of angio genesis may be related to up-regulation ofVEGF ex pression. 展开更多
关键词 血管内皮生长因子 骨髓间充质干细胞 血管生成 基因转染 组合效应 脑缺血 大鼠 胶囊
原文传递
Effects of bone marrow-derived mesenchymal stemcells engraftment on vascular endothelial cell growthfactor in lung tissue and plasma at early stage of smoke inhalation injury 被引量:4
15
作者 FengZhu Guang-hua Guo +1 位作者 Wen Chen Nian-yun Wang 《World Journal of Emergency Medicine》 SCIE CAS 2010年第3期224-228,共5页
下载PDF
Inhibition of VEGF-A expression in hypoxia-exposed fetal retinal microvascular endothelial cells by exosomes derived from human umbilical cord mesenchymal stem cells
16
作者 JING LI WANWAN FAN +5 位作者 LILI HAO YONGSHENG LI GUOCHENG YU WEI SUN XIANQIONG LUO JINGXIANG ZHONG 《BIOCELL》 SCIE 2023年第11期2485-2494,共10页
Objective:This study aimed to investigate the potential of human umbilical cord mesenchymal stem cell(hucMSC)-derived exosomes(hucMSC-Exos)in inhibiting hypoxia-induced cell hyper proliferation and overexpression of v... Objective:This study aimed to investigate the potential of human umbilical cord mesenchymal stem cell(hucMSC)-derived exosomes(hucMSC-Exos)in inhibiting hypoxia-induced cell hyper proliferation and overexpression of vascular endothelial growth factor A(VEGF-A)in immature human fetal retinal microvascular endothelial cells(hfRMECs).Methods:Exosomes were isolated from hucMSCs using cryogenic ultracentrifugation and characterized through various techniques,including transmission electron microscopy,nanoparticle tracking analysis,bicinchoninic acid assays,and western blotting.The hfRMECs were identified using von Willebrand factor(vWF)co-staining and divided into four groups:a control group cultured under normoxic condition,a hypoxic model group,a hypoxic group treated with low-concentration hucMSC-Exos(75μg/mL)and a hypoxic group treated with high-concentration hucMSC-Exos(100μg/mL).Cell viability and proliferation were assessed using Cell Counting Kit-8(CCK-8)assay and EdU(5-ethynyl-2′-deoxyuridine)assay respectively.Expression levels of VEGF-A were evaluated using RT-PCR,western blotting and immunofluorescence.Results:Hypoxia significantly increased hfRMECs’viability and proliferation by upregulating VEGF-A levels.The administration of hucMSC-Exos effectively reversed this response,with the high-concentration group exhibiting greater efficacy compared to the lowconcentration group.Conclusion:In conclusion,hucMSC-Exos can dose-dependently inhibit hypoxia-induced hyperproliferation and VEGF-A overexpression in immature fetal retinal microvascular endothelial cells. 展开更多
关键词 Mesenchymal stem cells EXOSOMES Immature fetal retinal vascular endothelial cells vascular endothelial growth factor A HYPOXIA
下载PDF
Vascular endothelial growth factor/platelet-derived growth factor receptor pathway is involved in bone marrow mesenchymal stem cell differentiation and directional migration toward gliomas 被引量:1
17
作者 Chaoshi Niu Yongfei Dong Ge Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第13期993-998,共6页
BACKGROUND: Vascular endothelial growth factor (VEGF) induces bone marrow-derived mesenchymal stem cell (BMSC) differentiation into vascular endothelial-like cells and promotes BMSC migration toward gliomas. Howe... BACKGROUND: Vascular endothelial growth factor (VEGF) induces bone marrow-derived mesenchymal stem cell (BMSC) differentiation into vascular endothelial-like cells and promotes BMSC migration toward gliomas. However, the molecular mechanisms by which VEGF induces BMSC differentiation and migration remain poorly understood. OBJECTIVE; To investigate the role of platelet-derived growth factor (PDGF) receptor (PDGFR) in BMSC differentiation and migration induced by VEGE DESIGN, TIME AND SETTING: A parallel, controlled, in vitro experiment was performed at the Molecular Neurobiology & Neural Regeneration and Repairing Laboratory, Anhui Provincial Hospital of Anhui Medical University, China from June 2008 to March 2009. MATERIALS: U87 glioma cells were purchased from Shanghai Institutes for Biological Sciences; mouse anti-human PDGFR and VEGF receptor (VEGFR) monoclonal antibodies were purchased from Peprotech, USA. METHODS: Isolated BMSCs were precultured with neutralizing antibody for VEGFR-1, VEGFR-2, PDGFR-α, and PDGFR-β to block biological activity of related receptors, followed by induced differentiation with 50μg/L VEGF. BMSCs induced with 50μg/L VEGF alone served as the VEGF-induced group. The control group remained untreated. MAIN OUTCOME MEASURES: Cell surface markers were identified by flow cytometry; BMSC surface cytokine receptor expression was detected by reverse transcription-polymerase chain reaction; the Transwell model was used to observe cell migration. RESULTS: After blocking the PDGFR, VEGF did not induce BMSC cell surface marker CD-31 or von Willebrand factor (vWF) expression. However, inhibition with VEGF receptor blocking agents, VEGF induced BMSCs to express CD-31 and vWE Following inhibition of the PDGFR, the number of cells migrating through the polycarbonate membrane Transwell chamber was decreased, as well as the number of BMSCs migrating to glioma cells. However, through the use of VEGF receptor blocking agents, the number of migrating cells remained unchanged. VEGF preculture increased the number of BMSCs migrating to gliomas. CONCLUSION: VEGF interacts with PDGFRs on the BMSC surface to attract BMSC directional migration and induce BMSC differentiation. The VEGF/PDGFR pathway participates in BMSC directional migration to glioma. VEGF pretreatment increased efficiency of BMSC migration to glioma. 展开更多
关键词 vascular endothelial growth factor platelet-derived growth factor receptor bone marrow-derived mesenchymal stem cells GLIOMA IMMUNOFLUORESCENCE
下载PDF
Human umbilical cord mesenchymal stem cells derivedexosomes on VEGF-A in hypoxic-induced mice retinal astrocytes and mice model of retinopathy of prematurity
18
作者 Xiao-Tian Zhang Bo-Wen Zhao +1 位作者 Yuan-Long Zhang Song Chen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第7期1238-1247,共10页
AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular en... AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular endothelial growth factor-A(VEGF-A)and to observe the therapeutic effect on the mouse model of retinopathy of prematurity(ROP).METHODS:Cultured hUCMSCs and extracted exosomes from them and then retinal astrocytes were divided into control group and hypoxia group.MTT assay,flow cytometry,reverse transcription-polymerase chain reaction(RT-PCR)and Western blot were used to detect related indicators.Possible mechanisms by which hUCMSCs exosomes affect VEGF-A expression in hypoxia-induced mouse retinal astrocytes were explored.At last,the efficacy of exosomes of UCMSCs in a mouse ROP model was explored.Graphpad6 was used to comprehensively process data information.RESULTS:The secretion was successfully extracted from the culture supernatant of hUCMSCs by gradient ultracentrifugation.Reactive oxygen species(ROS)and hypoxia inducible factor-1α(HIF-1α)of mice retinal astrocytes under different hypoxia time and the expression level of VEGF-A protein and VEGF-A mRNA increased,and the ROP cell model was established after 6h of hypoxia.The secretions of medium and high concentrations of hUCMSCs can reduce ROS and HIF-1α,the expression levels of VEGF-A protein and VEGF-A mRNA are statistically significant and concentration dependent.Compared with the ROP cell model group,the expression of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)signal pathway related factors in the hUCMSCs exocrine group is significantly decreased.The intravitreal injection of the secretions of medium and high concentrations of hUCMSCs can reduce VEGF-A and HIF-1αin ROP model tissues.HE staining shows that the number of retinal neovascularization in ROP mice decreases with the increase of the dose of hUCMSCs secretion.CONCLUSION:In a hypoxia induced mouse retinal astrocyte model,hUCMSCs exosomes are found to effectively reduce the expression of HIF-1αand VEGF-A,which are positively correlated with the concentration of hUCMSCs exosomes.HUCMSCs exosomes can effectively reduce the number of retinal neovascularization and the expression of HIF-1αand VEGF-A proteins in ROP mice,and are positively correlated with drug dosage.Besides,they can reduce the related factors on the PI3K/AKT/mTOR signaling pathway. 展开更多
关键词 human umbilical cord mesenchymal stem cells retinal astrocytes retinopathy of prematurity vascular endothelial growth factor hypoxia inducible factor
下载PDF
Mesenchymal stem cell-derived exosomes inhibit the VEGF-A expression in human retinal vascular endothelial cells induced by high glucose 被引量:2
19
作者 Guang-Hui He Ying-Xue Ma +6 位作者 Meng Dong Song Chen Yu-Chuan Wang Xiang Gao Bin Wu Jian Wang Jun-Hua Wang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2021年第12期1820-1827,共8页
AIM:To determine the effect of exosomes derived from human umbilical cord blood mesenchymal stem cells(hUCMSCs)on the expression of vascular endothelial growth factor A(VEGF-A)in human retinal vascular endothelial cel... AIM:To determine the effect of exosomes derived from human umbilical cord blood mesenchymal stem cells(hUCMSCs)on the expression of vascular endothelial growth factor A(VEGF-A)in human retinal vascular endothelial cells(HRECs).METHODS:Exosomes were isolated from hUCMSCs using cryogenic ultracentrifugation and characterized by transmission electron microscopy,Western blotting and nanoparticle tracking analysis.HRECs were randomly divided into a normal control group(group A),a high glucose model group(group B),a high glucose group with 25μg/mL(group C),50μg/mL(group D),and 100μg/mL exosomes(group E).Twenty-four hours after coculture,the cell proliferation rate was detected using flow cytometry,and the VEGF-A level was detected using immunofluorescence.After coculture 8,16,and 24h,the expression levels of VEGF-A in each group were detected using PCR and Western blots.RESULTS:The characteristic morphology(membrane structured vesicles)and size(diameter between 50 and 200 nm)were observed under transmission electron microscopy.The average diameter of 122.7 nm was discovered by nanoparticle tracking analysis(NTA).The exosomal markers CD9,CD63,and HSP70 were strongly detected.The proliferation rate of the cells in group B increased after 24h of coculture.Immunofluorescence analyses revealed that the upregulation of VEGF-A expression in HRECs stimulated by high glucose could be downregulated by cocultured hUCMSC-derived exosomes(F=39.03,P<0.01).The upregulation of VEGF-A protein(group C:F=7.96;group D:F=17.29;group E:F=11.89;8h:F=9.45;16h:F=12.86;24h:F=42.28,P<0.05)and mRNA(group C:F=4.137;group D:F=13.64;group E:F=22.19;8h:F=7.253;16h:F=16.98;24h:F=22.62,P<0.05)in HRECs stimulated by high glucose was downregulated by cocultured hUCMSC-derived exosomes(P<0.05).CONCLUSION:hUCMSC-derived exosomes downregulate VEGF-A expression in HRECs stimulated by high glucose in time and concentration dependent manner. 展开更多
关键词 mesenchymal stem cells EXOSOMES retinal vascular endothelial cells vascular endothelial growth factor A COCULTURE
下载PDF
Transplantation of human umbilical cord blood mesenchymal stem cells to treat a rat model of traumatic brain injury 被引量:5
20
作者 Junjian Zhao Naiyao Chen +7 位作者 Na Shen Hui Zhao Dali Wang Jun Shi Yang Wang Xiufeng Cui Zhenyu Yan Hui Xue 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第10期741-748,共8页
In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated arou... In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated around the injury site, surviving up to 4 weeks post-transplantation. In addition, transplantation-related death did not occur, and neurological functions significantly improved. Histological detection revealed attenuated pathological injury in rat brain tissues following human umbilical cord blood mesenchymal stem cell transplantation. In addition, the number of apoptotic cells decreased. Immunohistochemistry and in situ hybridization showed increased expression of brain-derived neurotrophic factor, nerve growth factor, basic fibroblast growth factor, and vascular endothelial growth factor, along with increased microvessel density in surrounding areas of brain injury. Results demonstrated migration of transplanted human umbilical cord blood mesenchymal stem cells into the lesioned boundary zone of rats, as well as increased angiogenesis and expression of related neurotrophic factors in the lesioned boundary zone. 展开更多
关键词 ANGIOGENESIS basic fibroblast growth factor brain-derived neurotrophic factor human umbilical cord blood mesenchymal stem cells nerve growth factor traumatic brain injury vascular endothelial growth factor
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部