Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the field of nerve damage repair. In the present study, human placenta...Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the field of nerve damage repair. In the present study, human placenta-derived mesenchymal stem ceils were induced to differentiate into neural stem cells, which were then transplanted into the spinal cord after local spinal cord injury in rats. The motor functional recovery and pathological changes in the injured spinal cord were observed for 3 successive weeks. The results showed that human placenta-derived mesenchymal stem cells can differentiate into neuron-like cells and that induced neural stem cells contribute to the restoration of injured spinal cord without causing transplant rejection. Thus, these cells promote the recovery of motor and sensory functions in a rat model of spinal cord injury. Therefore, human placenta-derived mesenchymal stem cells may be useful as seed cells during the repair of spinal cord injury.展开更多
Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are still unclear. In this study, we used stable doxycycline-inducible transgenic mou...Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are still unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc/SV40Tag+/Tet-on+) to explore the malignant trans- formation potential of neural stem cells by observing the differences of neural stem cells and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cells were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibrillary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibrillary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibrillary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cells. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.展开更多
microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesen...microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs in bone marrow-derived mesen- chymal stem cells, neural stem cells and neurons, miR-124 expression was substantially reduced in bone marrow-derived mesenchymal stem cells compared with the other cell types. We con- structed a lentiviral vector overexpressing miR-124 and transfected it into bone marrow-derived mesenchymal stem cells. Intracellular expression levels of the neuronal early markers [3-III tu- bulin and microtubule-associated protein-2 were significantly increased, and apoptosis induced by oxygen and glucose deprivation was reduced in transfected cells. After miR-124-transfected bone marrow-derived mesenchymal stem cells were transplanted into the injured rat spinal cord, a large number of cells positive for the neuronal marker neurofilament-200 were observed in the transplanted region. The Basso-Beattie-Bresnahan locomotion scores showed that the motor function of the hind limb of rats with spinal cord injury was substantially improved. These re- sults suggest that miR-124 plays an important role in the differentiation of bone marrow-derived mesenchymal stem cells into neurons. Our findings should facilitate the development of novel strategies for enhancing the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation for spinal cord injury.展开更多
基金supported by a grant from the Scientific Research Program of Liaoning Provincial Science and Technology Ministry in China,No.2012225014
文摘Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the field of nerve damage repair. In the present study, human placenta-derived mesenchymal stem ceils were induced to differentiate into neural stem cells, which were then transplanted into the spinal cord after local spinal cord injury in rats. The motor functional recovery and pathological changes in the injured spinal cord were observed for 3 successive weeks. The results showed that human placenta-derived mesenchymal stem cells can differentiate into neuron-like cells and that induced neural stem cells contribute to the restoration of injured spinal cord without causing transplant rejection. Thus, these cells promote the recovery of motor and sensory functions in a rat model of spinal cord injury. Therefore, human placenta-derived mesenchymal stem cells may be useful as seed cells during the repair of spinal cord injury.
文摘Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are still unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc/SV40Tag+/Tet-on+) to explore the malignant trans- formation potential of neural stem cells by observing the differences of neural stem cells and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cells were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibrillary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibrillary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibrillary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cells. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.
基金supported by the National Natural Science Foundation of China,No.81070971
文摘microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs in bone marrow-derived mesen- chymal stem cells, neural stem cells and neurons, miR-124 expression was substantially reduced in bone marrow-derived mesenchymal stem cells compared with the other cell types. We con- structed a lentiviral vector overexpressing miR-124 and transfected it into bone marrow-derived mesenchymal stem cells. Intracellular expression levels of the neuronal early markers [3-III tu- bulin and microtubule-associated protein-2 were significantly increased, and apoptosis induced by oxygen and glucose deprivation was reduced in transfected cells. After miR-124-transfected bone marrow-derived mesenchymal stem cells were transplanted into the injured rat spinal cord, a large number of cells positive for the neuronal marker neurofilament-200 were observed in the transplanted region. The Basso-Beattie-Bresnahan locomotion scores showed that the motor function of the hind limb of rats with spinal cord injury was substantially improved. These re- sults suggest that miR-124 plays an important role in the differentiation of bone marrow-derived mesenchymal stem cells into neurons. Our findings should facilitate the development of novel strategies for enhancing the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation for spinal cord injury.