According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network e...According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS.展开更多
A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established vi...A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established via Newton-Euler formalism.For quadrotor helicopter flying at low altitude in actual situation, it was more susceptible to be influenced by the turbulent wind field.Therefore, the turbulent wind field was generated according to Dryden model and taken into consideration as the disturbance source of quadrotor helicopter. Then, a nested loop control approach was proposed for the stabilization and navigation problems of the quadrotor subjected to wind disturbance. A decentralized PIDNN controller was designed for the inner loop to stabilize the attitude angle. A conventional PID controller was used for the outer loop in order to generate the reference path to inner loop. Moreover, the connective weights of the PIDNN were trained on-line by error back-propagation method. Furthermore, the initial connective weights were identified according to the principle of PID control theory and the appropriate learning rate was selected by discrete Lyapunov theory in order to ensure the stability. Finally, the simulation results demonstrate that the controller can effectively resist external wind disturbances, and presents good stability, maneuverability and robustness.展开更多
Four common oil analysis techniques, including the ferrography analysis (FA), the spectrometric oil analysis (SOA), the particle count analysis (PCA), and the oil quality testing (OQT), are used to implement t...Four common oil analysis techniques, including the ferrography analysis (FA), the spectrometric oil analysis (SOA), the particle count analysis (PCA), and the oil quality testing (OQT), are used to implement the military aeroengine wear fault diagnosis during the test drive process. To improve the precision and the reliability of the diagnosis, the aeroengine wear fault fusion diagnosis method based on the neural networks (NN) and the Dempster-Shafter (D-S) evidence theory is proposed. Firstly, according to the standard value of the wear limit, original data are pre-processed into Boolean values. Secondly, sub-NNs are established to perform the single diagnosis, and their training samples are dependent on experiences from experts. After each sub-NN is trained, diagnosis results are obtained. Thirdly, the diagnosis results of each sub-NN are considered as the basic probability allocation value to faults. The improved D-S evidence theory is applied to the fusion diagnosis, and the final fusion results are obtained. Finally, the method is verified by a diagnosis example.展开更多
In this paper, rough set theory is used to extract roughly-correct inference rules from information systems. Based on this idea, the learning algorithm ERCR is presented. In order to refine the learned roughly-correct...In this paper, rough set theory is used to extract roughly-correct inference rules from information systems. Based on this idea, the learning algorithm ERCR is presented. In order to refine the learned roughly-correct inference rules, the knowledge-based neural network is used. The method presented here sufficiently combines the advanages of rough set theory and neural network.展开更多
文摘According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS.
基金Project(2011ZA51001)supported by National Aerospace Science Foundation of China
文摘A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established via Newton-Euler formalism.For quadrotor helicopter flying at low altitude in actual situation, it was more susceptible to be influenced by the turbulent wind field.Therefore, the turbulent wind field was generated according to Dryden model and taken into consideration as the disturbance source of quadrotor helicopter. Then, a nested loop control approach was proposed for the stabilization and navigation problems of the quadrotor subjected to wind disturbance. A decentralized PIDNN controller was designed for the inner loop to stabilize the attitude angle. A conventional PID controller was used for the outer loop in order to generate the reference path to inner loop. Moreover, the connective weights of the PIDNN were trained on-line by error back-propagation method. Furthermore, the initial connective weights were identified according to the principle of PID control theory and the appropriate learning rate was selected by discrete Lyapunov theory in order to ensure the stability. Finally, the simulation results demonstrate that the controller can effectively resist external wind disturbances, and presents good stability, maneuverability and robustness.
文摘Four common oil analysis techniques, including the ferrography analysis (FA), the spectrometric oil analysis (SOA), the particle count analysis (PCA), and the oil quality testing (OQT), are used to implement the military aeroengine wear fault diagnosis during the test drive process. To improve the precision and the reliability of the diagnosis, the aeroengine wear fault fusion diagnosis method based on the neural networks (NN) and the Dempster-Shafter (D-S) evidence theory is proposed. Firstly, according to the standard value of the wear limit, original data are pre-processed into Boolean values. Secondly, sub-NNs are established to perform the single diagnosis, and their training samples are dependent on experiences from experts. After each sub-NN is trained, diagnosis results are obtained. Thirdly, the diagnosis results of each sub-NN are considered as the basic probability allocation value to faults. The improved D-S evidence theory is applied to the fusion diagnosis, and the final fusion results are obtained. Finally, the method is verified by a diagnosis example.
文摘In this paper, rough set theory is used to extract roughly-correct inference rules from information systems. Based on this idea, the learning algorithm ERCR is presented. In order to refine the learned roughly-correct inference rules, the knowledge-based neural network is used. The method presented here sufficiently combines the advanages of rough set theory and neural network.