Neurofilament protein is a component of the mature neuronal cytoskeleton, and it interacts with the zygosome, which is mediated by neurofilament-related proteins. Neurofilament protein regulates enzyme function and th...Neurofilament protein is a component of the mature neuronal cytoskeleton, and it interacts with the zygosome, which is mediated by neurofilament-related proteins. Neurofilament protein regulates enzyme function and the structure of linker proteins. In addition, neurofilament gene expression plays an important role in nervous system development. Previous studies have shown that neurofilament gene transcriptional regulation is crucial for neurofilament protein expression, especially in axonal regeneration and degenerative diseases. Post-transcriptional regulation increased neurofilament protein gene transcription during axonal regeneration, ultimately resulting in a pattern of neurofilament protein expression. An expression imbalance of post-transcriptional regulatory proteins and other disorders could lead to amyotrophic lateral sclerosis or other neurodegenerative diseases. These findings indicated that after transcription, neurofilament protein regulated expression of related proteins and promoted regeneration of damaged axons, suggesting that regulation disorders could lead to neurodegenerative diseases.展开更多
The visual pathway have 6 parts, involving optic nerve, optic chiasm, optic tract, lateral geniculate body, optic radiation and cortical striatum area. Corresponding changes may be found in these 6 parts following opt...The visual pathway have 6 parts, involving optic nerve, optic chiasm, optic tract, lateral geniculate body, optic radiation and cortical striatum area. Corresponding changes may be found in these 6 parts following optic nerve injury. At present, studies mainly focus on optic nerve and retina, but studies on lateral geniculate body are few. OBJECTIVE: To prepare models of acute optic nerve injury for observing the changes of neurons in lateral geniculate body, expression of neurofilament protein at different time after injury and cell apoptosis under the optical microscope, and for investigating the changes of neurons in lateral geniculate body following acute optic nerve injury. DESIGN: Completely randomized grouping design, controlled animal experiment. SETTING: Department of Neurosurgery, General Hospital of Ji'nan Military Area Command of Chinese PLA. MATERIALS: Twenty-eight adult healthy cats of either gender and common grade, weighing from 2.0 to 3.5 kg, were provided by the Animal Experimental Center of Fudan University. The involved cats were divided into 2 groups according to table of random digit: normal control group (n=3) and model group (n=25). Injury 6 hours, l, 3, 7 and 14 days five time points were set in model group for later observation, 5 cats at each time point. TUNEL kit (Bohringer-Mannheim company )and NF200& Mr 68 000 mouse monoclonal antibody (NeoMarkers Company) were used in this experiment. METHODS: This experiment was carded out in the Department of Neurosurgery, General Hospital of Ji'nan Military Area Command of Chinese PLA between June 2004 and June 2005.① The cats of model group were developed into cat models of acute intracranial optic nerve injury as follows: The anesthetized cats were placed in lateral position. By imitating operation to human, pterion approach was used. An incision was made at the joint line between outer canthus and tragus, and deepened along cranial base until white optic nerve via optic nerve pore and further to brain tissue. Optic nerve about 3 mm was liberated and occluded by noninvasive vascular clamp for 20 s. After removal of noninvasive vascular clamp, the area compressed by optic nerve was hollowed and narrowed, but non-fractured. Skull was closed when haemorrhage was not found. Bilateral pupillary size, direct and indirect light reflect were observed. Operative side pupil was enlarged as compared with opposite side, direct light reflect disappeared and indirect light reflect existed, which indicated that the models were successful. Animals of control group were not modeled .② The animals in the control group and model group were sacrificed before and 6 hours, 1, 3, 7 and 14 days after modeling respectively. Lateral geniculate body sample was taken and performed haematoxylin & eosin staining. Immunohistochemical staining showed lateral geniculate body neurofilament protein expression, and a comparison of immunohistochemial staining results was made between experimental group and control group. Terminal deoxynucleo-tidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) was used to label apoptotic cells in lateral geniculate body. MAIN OUTCOME MEASURES: Neuronal morphological change, neurofilament protein expression and cell apoptosis in lateral geniculate body following acute optic nerve injury. RESULTS: Twenty-eight involved cats entered the final analysis. ① Histological observation results: In the control group, cell processes were obviously found, which were few or shortening in the model group. ② Neuronal neurofilament protein expression: Cells in lateral geniculate body in the control group and at 6 hours after injury presented clear strip-shaped staining, and those at 7 and 14 days presented irregular distribution without layers and obviously decreasing staining intensity. The positive rate of neurofilament protein in lateral geniculate body in control group and 6 hours, l, 3, 7 and 14 days after injury was ( 10.22±0.42) %, (10.03±0.24) %, (9.94±0.14) %, (9.98±0.22) %, (8.18±0.34) % and (6.37±0.18)%, respectively. Positive rate of neurofilament protein in control group, at 6 hours, 1 or 3 days after injury was significantly different from that at 7 days after injury (P 〈 0.05); Positive rate of neurofilament protein in control group, at 6 hours, 1, 3 or 7 days after injury was significantly different from that at 14 days after injury (P 〈 0.05). It indicated that neuronal injury in lateral geniculate body was not obvious within short term after optic nerve injury, but obvious at 7 days after injury and progressively aggravated until at 14 days after injury.③ Neuronal apoptosis: TUNEL staining showed that neuronal apoptosis in lateral geniculate body appeared at 7 days after injury, and a Lot of neuronal apoptosis in lateral geniculate body was found at 14 days after injury. It indicated that neuronal injury in lateral geniculate body was related to apoptosis. CONCLUSION: In short term after optic nerve injury (within 7 days), nerve injury of lateral geniculate body is not obvious, then, it will aggravate with the elongation of injury time. The occurrence of neuronal iniury of lateral geniculate body is related to the apoptosis of nerve cells.展开更多
Previous studies have shown that neurofilament protein M expression is upregulated in the early stage of spinal cord ischemia/reperfusion injury, indicating that this protein may play a role in the injury process. In ...Previous studies have shown that neurofilament protein M expression is upregulated in the early stage of spinal cord ischemia/reperfusion injury, indicating that this protein may play a role in the injury process. In the present study, we compared protein expression in spinal cord tissue of rabbits after 25 minutes of ischemia followed by 0, 12, 24, or 48 hours of reperfusion with that of sham operated rabbits, using proteomic two-dimensional gel electrophoresis and mass spec- trometry. In addition, the nerve repair-related neurofilament protein M with the unregulated expression was detected with immunohistochemistry and western blot analysis. Two-dimen- sional gel electrophoresis and mass spectrometry showed that, compared with the sham group, upregulation of protein expression was most significant in the spinal cords of rabbits that had undergone ischemia and 24 hours of reperfusion. Immunohistochemical analysis revealed that neurofilament protein M was located in the membrane and cytoplasm of neuronal soma and axons at each time point after injury. Western blot analysis showed that neurofilament protein M expression increased with reperfusion time until it peaked at 24 hours and returned to baseline level after 48 hours. Furthermore, neurofilament protein M is phosphorylated under oxidative stress, and expression changes were parallel for the phosphorylated and non-phosphorylated forms. Neurofilament protein M plays an important role in spinal cord ischemia/reperfusion injury, and its functions are achieved through oxidative phosphorylation.展开更多
BACKGROUND: Growth-associated protein-43 (GAP-43) expression in the nervous system has been demonstrated to promote neural regeneration, neuronal growth and development, as well as synaptic reconstruction. Neurofil...BACKGROUND: Growth-associated protein-43 (GAP-43) expression in the nervous system has been demonstrated to promote neural regeneration, neuronal growth and development, as well as synaptic reconstruction. Neurofilament 200 (NF200) expression could reflect degree of injury and repair in injured spinal axons. OBJECTIVE: To observe NF200 expression changes in a rat model of complete spinal cord injury following GAP-43 treatment and to explore the effects of GAP-43 following spinal cord injury. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Laboratory of Histology and Embryology of Kunming Medical University between March 2007 and October 2008. MATERIALS: GAP-43 and GAP-43 antibody were provided by Beijing Boao Biology, China; mouse anti-rat NF200 antibody was purchased from Chemicon, USA. METHODS: Female, 8-week-old, Sprague Dawley rats were randomly assigned into three groups following complete spinal cord injury, with 20 animals in each group: GAP-43 antibody, GAP-43, and model groups. In addition, each group was subdivided into four subgroups according to sampling time after modeling, Le., 3-, 5-, 9-, and 15-day groups, with 5 rats in each group. GAP-43 antibody or GAP-43 was injected into injury sites of the spinal cord, 5 μg/0.2 mL, respectively, twice daily for three consecutive days, followed by three additional days of injection, once daily. The model group did not receive any treatment following injury. MAIN OUTCOME MEASURES: NF200 expression in the damaged spinal area at different stages was detected by immunohistochemistry; lower limb motion function following injury was evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. RESULTS: NF200 expression was significantly reduced in the GAP-43 antibody group, compared with GAP-43 and model groups, at 3 and 5 days after spinal cord injury (P 〈 0.05). In addition, the model group expressed significantly less NF200 than the GAP-43 group (P 〈 0.05). BBB scores from the GAP-43 antibody and model groups were remarkably less than the GAP-43 group (P 〈 0.05). At 9 and 15 days of injury after drug withdrawal, NF200 expression was increased in the GAP-43 antibody group, and NF200 expression and BBB scores in the GAP-43 antibody and GAP-43 groups were significantly greater than in the model group (P 〈 0.05). In particular, the GAP-43 group exhibited greater BBB scores than the GAP-43 antibody group at day 9 (P 〈 0.05). CONCLUSION: GAP-43 promoted NF200 expression and recovery of lower limb function. Early administration of GAP-43 antibody produced reversible nerve inhibition, which was rapidly restored following withdrawal.展开更多
[ Objective ] The paper was to explore effects of Echinacea polysaccharide (EPS) on expression of NF-KB protein secreted by LPS-injured IEC-6 cells, and to provide a theoretical basis for clinical application of Ech...[ Objective ] The paper was to explore effects of Echinacea polysaccharide (EPS) on expression of NF-KB protein secreted by LPS-injured IEC-6 cells, and to provide a theoretical basis for clinical application of Echinacea purpurea against bacterial diseases and enhancement of immunity. [ Method] Nucleoprotein extracted from IEC-6 cells in normal control group, LPS group, different concentrations of EPS (50, 100,200,500 μg/mL) + LPS groups were detected by SDS- PAGE electrophoresis, and the content of NF-κB protein was analyzed using western blotting method. [ Result ] The content of NF-KB protein in normal control group was the lowest, while that in LPS group was the highest. The content of NF-κB protein in EPS group gradually decreased with the increasing concentration of EPS. [ Result] The expression of NF-κB protein increased when IEC-6 cells were stimulated by LPS, and EPS could effectively inhibit increased expression of NF- κB protein. With the increasing concentration of EPS, the inhibition effect against increased expression of NF-κB protein gradually strengthened.展开更多
基金supported by the National Natural Science Foundation of China, No. 30872609
文摘Neurofilament protein is a component of the mature neuronal cytoskeleton, and it interacts with the zygosome, which is mediated by neurofilament-related proteins. Neurofilament protein regulates enzyme function and the structure of linker proteins. In addition, neurofilament gene expression plays an important role in nervous system development. Previous studies have shown that neurofilament gene transcriptional regulation is crucial for neurofilament protein expression, especially in axonal regeneration and degenerative diseases. Post-transcriptional regulation increased neurofilament protein gene transcription during axonal regeneration, ultimately resulting in a pattern of neurofilament protein expression. An expression imbalance of post-transcriptional regulatory proteins and other disorders could lead to amyotrophic lateral sclerosis or other neurodegenerative diseases. These findings indicated that after transcription, neurofilament protein regulated expression of related proteins and promoted regeneration of damaged axons, suggesting that regulation disorders could lead to neurodegenerative diseases.
文摘The visual pathway have 6 parts, involving optic nerve, optic chiasm, optic tract, lateral geniculate body, optic radiation and cortical striatum area. Corresponding changes may be found in these 6 parts following optic nerve injury. At present, studies mainly focus on optic nerve and retina, but studies on lateral geniculate body are few. OBJECTIVE: To prepare models of acute optic nerve injury for observing the changes of neurons in lateral geniculate body, expression of neurofilament protein at different time after injury and cell apoptosis under the optical microscope, and for investigating the changes of neurons in lateral geniculate body following acute optic nerve injury. DESIGN: Completely randomized grouping design, controlled animal experiment. SETTING: Department of Neurosurgery, General Hospital of Ji'nan Military Area Command of Chinese PLA. MATERIALS: Twenty-eight adult healthy cats of either gender and common grade, weighing from 2.0 to 3.5 kg, were provided by the Animal Experimental Center of Fudan University. The involved cats were divided into 2 groups according to table of random digit: normal control group (n=3) and model group (n=25). Injury 6 hours, l, 3, 7 and 14 days five time points were set in model group for later observation, 5 cats at each time point. TUNEL kit (Bohringer-Mannheim company )and NF200& Mr 68 000 mouse monoclonal antibody (NeoMarkers Company) were used in this experiment. METHODS: This experiment was carded out in the Department of Neurosurgery, General Hospital of Ji'nan Military Area Command of Chinese PLA between June 2004 and June 2005.① The cats of model group were developed into cat models of acute intracranial optic nerve injury as follows: The anesthetized cats were placed in lateral position. By imitating operation to human, pterion approach was used. An incision was made at the joint line between outer canthus and tragus, and deepened along cranial base until white optic nerve via optic nerve pore and further to brain tissue. Optic nerve about 3 mm was liberated and occluded by noninvasive vascular clamp for 20 s. After removal of noninvasive vascular clamp, the area compressed by optic nerve was hollowed and narrowed, but non-fractured. Skull was closed when haemorrhage was not found. Bilateral pupillary size, direct and indirect light reflect were observed. Operative side pupil was enlarged as compared with opposite side, direct light reflect disappeared and indirect light reflect existed, which indicated that the models were successful. Animals of control group were not modeled .② The animals in the control group and model group were sacrificed before and 6 hours, 1, 3, 7 and 14 days after modeling respectively. Lateral geniculate body sample was taken and performed haematoxylin & eosin staining. Immunohistochemical staining showed lateral geniculate body neurofilament protein expression, and a comparison of immunohistochemial staining results was made between experimental group and control group. Terminal deoxynucleo-tidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) was used to label apoptotic cells in lateral geniculate body. MAIN OUTCOME MEASURES: Neuronal morphological change, neurofilament protein expression and cell apoptosis in lateral geniculate body following acute optic nerve injury. RESULTS: Twenty-eight involved cats entered the final analysis. ① Histological observation results: In the control group, cell processes were obviously found, which were few or shortening in the model group. ② Neuronal neurofilament protein expression: Cells in lateral geniculate body in the control group and at 6 hours after injury presented clear strip-shaped staining, and those at 7 and 14 days presented irregular distribution without layers and obviously decreasing staining intensity. The positive rate of neurofilament protein in lateral geniculate body in control group and 6 hours, l, 3, 7 and 14 days after injury was ( 10.22±0.42) %, (10.03±0.24) %, (9.94±0.14) %, (9.98±0.22) %, (8.18±0.34) % and (6.37±0.18)%, respectively. Positive rate of neurofilament protein in control group, at 6 hours, 1 or 3 days after injury was significantly different from that at 7 days after injury (P 〈 0.05); Positive rate of neurofilament protein in control group, at 6 hours, 1, 3 or 7 days after injury was significantly different from that at 14 days after injury (P 〈 0.05). It indicated that neuronal injury in lateral geniculate body was not obvious within short term after optic nerve injury, but obvious at 7 days after injury and progressively aggravated until at 14 days after injury.③ Neuronal apoptosis: TUNEL staining showed that neuronal apoptosis in lateral geniculate body appeared at 7 days after injury, and a Lot of neuronal apoptosis in lateral geniculate body was found at 14 days after injury. It indicated that neuronal injury in lateral geniculate body was related to apoptosis. CONCLUSION: In short term after optic nerve injury (within 7 days), nerve injury of lateral geniculate body is not obvious, then, it will aggravate with the elongation of injury time. The occurrence of neuronal iniury of lateral geniculate body is related to the apoptosis of nerve cells.
基金supported by the National Natural Science Foundation of China,No.81350013,30872609
文摘Previous studies have shown that neurofilament protein M expression is upregulated in the early stage of spinal cord ischemia/reperfusion injury, indicating that this protein may play a role in the injury process. In the present study, we compared protein expression in spinal cord tissue of rabbits after 25 minutes of ischemia followed by 0, 12, 24, or 48 hours of reperfusion with that of sham operated rabbits, using proteomic two-dimensional gel electrophoresis and mass spec- trometry. In addition, the nerve repair-related neurofilament protein M with the unregulated expression was detected with immunohistochemistry and western blot analysis. Two-dimen- sional gel electrophoresis and mass spectrometry showed that, compared with the sham group, upregulation of protein expression was most significant in the spinal cords of rabbits that had undergone ischemia and 24 hours of reperfusion. Immunohistochemical analysis revealed that neurofilament protein M was located in the membrane and cytoplasm of neuronal soma and axons at each time point after injury. Western blot analysis showed that neurofilament protein M expression increased with reperfusion time until it peaked at 24 hours and returned to baseline level after 48 hours. Furthermore, neurofilament protein M is phosphorylated under oxidative stress, and expression changes were parallel for the phosphorylated and non-phosphorylated forms. Neurofilament protein M plays an important role in spinal cord ischemia/reperfusion injury, and its functions are achieved through oxidative phosphorylation.
文摘BACKGROUND: Growth-associated protein-43 (GAP-43) expression in the nervous system has been demonstrated to promote neural regeneration, neuronal growth and development, as well as synaptic reconstruction. Neurofilament 200 (NF200) expression could reflect degree of injury and repair in injured spinal axons. OBJECTIVE: To observe NF200 expression changes in a rat model of complete spinal cord injury following GAP-43 treatment and to explore the effects of GAP-43 following spinal cord injury. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Laboratory of Histology and Embryology of Kunming Medical University between March 2007 and October 2008. MATERIALS: GAP-43 and GAP-43 antibody were provided by Beijing Boao Biology, China; mouse anti-rat NF200 antibody was purchased from Chemicon, USA. METHODS: Female, 8-week-old, Sprague Dawley rats were randomly assigned into three groups following complete spinal cord injury, with 20 animals in each group: GAP-43 antibody, GAP-43, and model groups. In addition, each group was subdivided into four subgroups according to sampling time after modeling, Le., 3-, 5-, 9-, and 15-day groups, with 5 rats in each group. GAP-43 antibody or GAP-43 was injected into injury sites of the spinal cord, 5 μg/0.2 mL, respectively, twice daily for three consecutive days, followed by three additional days of injection, once daily. The model group did not receive any treatment following injury. MAIN OUTCOME MEASURES: NF200 expression in the damaged spinal area at different stages was detected by immunohistochemistry; lower limb motion function following injury was evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. RESULTS: NF200 expression was significantly reduced in the GAP-43 antibody group, compared with GAP-43 and model groups, at 3 and 5 days after spinal cord injury (P 〈 0.05). In addition, the model group expressed significantly less NF200 than the GAP-43 group (P 〈 0.05). BBB scores from the GAP-43 antibody and model groups were remarkably less than the GAP-43 group (P 〈 0.05). At 9 and 15 days of injury after drug withdrawal, NF200 expression was increased in the GAP-43 antibody group, and NF200 expression and BBB scores in the GAP-43 antibody and GAP-43 groups were significantly greater than in the model group (P 〈 0.05). In particular, the GAP-43 group exhibited greater BBB scores than the GAP-43 antibody group at day 9 (P 〈 0.05). CONCLUSION: GAP-43 promoted NF200 expression and recovery of lower limb function. Early administration of GAP-43 antibody produced reversible nerve inhibition, which was rapidly restored following withdrawal.
基金Supported by National Natural Science Foundation of China(31472230)Natural Science Foundation of Hebei Province(C2014407068)Project of Hebei Department of Science and Technology(14966610D)
文摘[ Objective ] The paper was to explore effects of Echinacea polysaccharide (EPS) on expression of NF-KB protein secreted by LPS-injured IEC-6 cells, and to provide a theoretical basis for clinical application of Echinacea purpurea against bacterial diseases and enhancement of immunity. [ Method] Nucleoprotein extracted from IEC-6 cells in normal control group, LPS group, different concentrations of EPS (50, 100,200,500 μg/mL) + LPS groups were detected by SDS- PAGE electrophoresis, and the content of NF-κB protein was analyzed using western blotting method. [ Result ] The content of NF-KB protein in normal control group was the lowest, while that in LPS group was the highest. The content of NF-κB protein in EPS group gradually decreased with the increasing concentration of EPS. [ Result] The expression of NF-κB protein increased when IEC-6 cells were stimulated by LPS, and EPS could effectively inhibit increased expression of NF- κB protein. With the increasing concentration of EPS, the inhibition effect against increased expression of NF-κB protein gradually strengthened.