期刊文献+
共找到302篇文章
< 1 2 16 >
每页显示 20 50 100
5-Bromo-2'-deoxyuridine labeling:historical perspectives,factors infiuencing the detection,toxicity,and its implications in the neurogenesis
1
作者 Joaquín Martí-Clúa 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期302-308,共7页
The halopyrimidine 5-bromo-2′-deoxyuridine(BrdU)is an exogenous marker of DNA synthesis.Since the introduction of monoclonal antibodies against BrdU,an increasing number of methodologies have been used for the immuno... The halopyrimidine 5-bromo-2′-deoxyuridine(BrdU)is an exogenous marker of DNA synthesis.Since the introduction of monoclonal antibodies against BrdU,an increasing number of methodologies have been used for the immunodetection of this synthesized bromine-tagged base analogue into replicating DNA.BrdU labeling is widely used for identifying neuron precursors and following their fate during the embryonic,perinatal,and adult neurogenesis in a variety of vertebrate species including birds,reptiles,and mammals.Due to BrdU toxicity,its incorporation into replicating DNA presents adverse consequences on the generation,survival,and settled patterns of cells.This may lead to false results and misinterpretation in the identification of proliferative neuroblasts.In this review,I will indicate the detrimental effects of this nucleoside during the development of the central nervous system,as well as the reliability of BrdU labeling to detect proliferating neuroblasts.Moreover,it will show factors influencing BrdU immunodetection and the contribution of this nucleoside to the study of prenatal,perinatal,and adult neurogenesis.Human adult neurogenesis will also be discussed.It is my hope that this review serves as a reference for those researchers who focused on detecting cells that are in the synthetic phase of the cell cycle. 展开更多
关键词 5-bromo-2′-deoxyuridine adult neurogenesis human adult neurogenesis LABELING pitfalls prenatal neurogenesis proliferation S-PHASE suturing S-phase TOXICITY
下载PDF
Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism 被引量:3
2
作者 Jie Li Wen Jiang +9 位作者 Yuefang Cai Zhenqiu Ning Yingying Zhou Chengyi Wang Sookja Ki Chung Yan Huang Jingbo Sun Minzhen Deng Lihua Zhou Xiao Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期650-656,共7页
Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However... Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction. 展开更多
关键词 astrocytic endothelin-1 dentate gyrus differentially expressed proteins HIPPOCAMPUS ischemic stroke learning and memory deficits lipid metabolism neural stem cells neurogenesis proliferation
下载PDF
Activation of endogenous neurogenesis and angiogenesis by basic fibroblast growth factor-chitosan gel in an adult rat model of ischemic stroke 被引量:2
3
作者 Hongmei Duan Shulun Li +11 位作者 Peng Hao Fei Hao Wen Zhao Yudan Gao Hui Qiao Yiming Gu Yang Lv Xinjie Bao Kin Chiu Kwok-Fai So Zhaoyang Yang Xiaoguang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期409-415,共7页
Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactiv... Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke. 展开更多
关键词 adult endogenous neurogenesis ANGIOGENESIS basic fibroblast growth factor-chitosan gel CHITOSAN functional recovery ischemic stroke neural stem cell newborn neuron
下载PDF
Adult neurogenesis:a real hope or a delusion? 被引量:1
4
作者 Ghulam Hussain Rabia Akram +5 位作者 Haseeb Anwar Faiqa Sajid Tehreem Iman Hyung Soo Han Chand Raza Jose-Luis Gonzalez De Aguilar 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期6-15,共10页
Adult neurogenesis,the process of creating new neurons,involves the coordinated division,migration,and differentiation of neural stem cells.This process is restricted to neurogenic niches located in two distinct areas... Adult neurogenesis,the process of creating new neurons,involves the coordinated division,migration,and differentiation of neural stem cells.This process is restricted to neurogenic niches located in two distinct areas of the brain:the subgranular zone of the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricle,where new neurons are generated and then migrate to the olfactory bulb.Neurogenesis has been thought to occur only during the embryonic and early postnatal stages and to decline with age due to a continuous depletion of neural stem cells.Interestingly,recent years have seen tremendous progress in our understanding of adult brain neurogenesis,bridging the knowledge gap between embryonic and adult neurogenesis.Here,we discuss the current status of adult brain neurogenesis in light of what we know about neural stem cells.In this notion,we talk about the importance of intra cellular signaling molecules in mobilizing endogenous neural stem cell prolife ration.Based on the current understanding,we can declare that these molecules play a role in targeting neurogenesis in the mature brain.However,to achieve this goal,we need to avoid the undesired proliferation of neural stem cells by controlling the necessary checkpoints,which can lead to tumorigenesis and prove to be a curse instead of a blessing or hope. 展开更多
关键词 adult neurogenesis AGING brain-derived neurotrophic factor dentate gyrus HIPPOCAMPUS neural stem cells neurotrophic factors NOTCH oxidative stress stem cells subgranular zone
下载PDF
The role of exosomes in adult neurogenesis:implications for neurodegenerative diseases 被引量:1
5
作者 Zhuoyang Yu Yan Teng +1 位作者 Jing Yang Lu Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期282-288,共7页
Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exoso... Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exosomes exert biological function by transporting factors between different cells and by regulating biological pathways in recipient cells.As an important form of intercellular communication,exosomes are increasingly being investigated due to their ability to transfer bioactive molecules such as lipids,proteins,mRNAs,and microRNAs between cells,and because they can regulate physiological and pathological processes in the central nervous system.Adult neurogenesis is a multistage process by which new neurons are generated and migrate to be integrated into existing neuronal circuits.In the adult brain,neurogenesis is mainly localized in two specialized niches:the subventricular zone adjacent to the lateral ventricles and the subgranular zone of the dentate gyrus.An increasing body of evidence indicates that adult neurogenesis is tightly controlled by environmental conditions with the niches.In recent studies,exosomes released from different sources of cells were shown to play an active role in regulating neurogenesis both in vitro and in vivo,thereby participating in the progression of neurodegenerative disorders in patients and in various disease models.Here,we provide a state-of-the-art synopsis of existing research that aimed to identify the diverse components of exosome cargoes and elucidate the therapeutic potential of exosomal contents in the regulation of neurogenesis in several neurodegenerative diseases.We emphasize that exosomal cargoes could serve as a potential biomarker to monitor functional neurogenesis in adults.In addition,exosomes can also be considered as a novel therapeutic approach to treat various neurodegenerative disorders by improving endogenous neurogenesis to mitigate neuronal loss in the central nervous system. 展开更多
关键词 adult neurogenesis Alzheimer’s disease amyotrophic lateral sclerosis EXOSOME Huntington’s disease neurodegenerative disease neurogenic niches Parkinson’s disease
下载PDF
Long non-coding RNA H19 regulates neurogenesis of induced neural stem cells in a mouse model of closed head injury 被引量:1
6
作者 Mou Gao Qin Dong +4 位作者 Zhijun Yang Dan Zou Yajuan Han Zhanfeng Chen Ruxiang Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期872-880,共9页
Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury.We previously reported that induced neural stem cells exert beneficial effects on neural regen... Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury.We previously reported that induced neural stem cells exert beneficial effects on neural regeneration via cell replacement.However,the neural regeneration efficiency of induced neural stem cells remains limited.In this study,we explored differentially expressed genes and long non-coding RNAs to clarify the mechanism underlying the neurogenesis of induced neural stem cells.We found that H19 was the most downregulated neurogenesis-associated lnc RNA in induced neural stem cells compared with induced pluripotent stem cells.Additionally,we demonstrated that H19 levels in induced neural stem cells were markedly lower than those in induced pluripotent stem cells and were substantially higher than those in induced neural stem cell-derived neurons.We predicted the target genes of H19 and discovered that H19 directly interacts with mi R-325-3p,which directly interacts with Ctbp2 in induced pluripotent stem cells and induced neural stem cells.Silencing H19 or Ctbp2 impaired induced neural stem cell proliferation,and mi R-325-3p suppression restored the effect of H19 inhibition but not the effect of Ctbp2 inhibition.Furthermore,H19 silencing substantially promoted the neural differentiation of induced neural stem cells and did not induce apoptosis of induced neural stem cells.Notably,silencing H19 in induced neural stem cell grafts markedly accelerated the neurological recovery of closed head injury mice.Our results reveal that H19 regulates the neurogenesis of induced neural stem cells.H19 inhibition may promote the neural differentiation of induced neural stem cells,which is closely associated with neurological recovery following closed head injury. 展开更多
关键词 closed head injury Ctbp2 induced neural stem cell lncRNA H19 miR-325-3p neurogenesis
下载PDF
Versatile strategies for adult neurogenesis:avenues to repair the injured brain
7
作者 Junyi Zhao Siyu Liu +1 位作者 Xianyuan Xiang Xinzhou Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期774-780,共7页
Brain injuries due to trauma or stroke are major causes of adult death and disability.Unfortunately,few interventions are effective for post-injury repair of brain tissue.After a long debate on whether endogenous neur... Brain injuries due to trauma or stroke are major causes of adult death and disability.Unfortunately,few interventions are effective for post-injury repair of brain tissue.After a long debate on whether endogenous neurogenesis actually happens in the adult human brain,there is now substantial evidence to support its occurrence.Although neurogenesis is usually significantly stimulated by injury,the reparative potential of endogenous differentiation from neural stem/progenitor cells is usually insufficient.Alternatively,exogenous stem cell transplantation has shown promising results in animal models,but limitations such as poor long-term survival and inefficient neuronal differentiation make it still challenging for clinical use.Recently,a high focus was placed on glia-to-neuron conversion under single-factor regulation.Despite some inspiring results,the validity of this strategy is still controversial.In this review,we summarize historical findings and recent advances on neurogenesis strategies for neurorepair after brain injury.We also discuss their advantages and drawbacks,as to provide a comprehensive account of their potentials for further studies. 展开更多
关键词 adult neurogenesis glia-to-neuron conversion ischemic stroke neurogenic niche NEUROINFLAMMATION stem cell transplantation traumatic brain injury
下载PDF
Potential role of hippocampal neurogenesis in spinal cord injury induced post-trauma depression
8
作者 Ying Ma Yue Qiao Xiang Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2144-2156,共13页
It has been reported both in clinic and rodent models that beyond spinal cord injury directly induced symptoms, such as paralysis, neuropathic pain, bladder/bowel dysfunction, and loss of sexual function, there are a ... It has been reported both in clinic and rodent models that beyond spinal cord injury directly induced symptoms, such as paralysis, neuropathic pain, bladder/bowel dysfunction, and loss of sexual function, there are a variety of secondary complications, including memory loss, cognitive decline, depression, and Alzheimer's disease. The largescale longitudinal population-based studies indicate that post-trauma depression is highly prevalent in spinal cord injury patients. Yet, few basic studies have been conducted to address the potential molecular mechanisms. One of possible factors underlying the depression is the reduction of adult hippocampal neurogenesis which may come from less physical activity, social isolation, chronic pain, and elevated neuroinflammation after spinal cord injury. However, there is no clear consensus yet. In this review, we will first summarize the alteration of hippocampal neurogenesis post-spinal cord injury. Then, we will discuss possible mechanisms underlie this important spinal cord injury consequence. Finally, we will outline the potential therapeutic options aimed at enhancing hippocampal neurogenesis to ameliorate depression. 展开更多
关键词 antidepressants chronic pain DEPRESSION EXERCISE hippocampal neurogenesis inflammation inhibition NEUROINFLAMMATION physical activity deficits social isolation spinal cord injury
下载PDF
Post-transcriptional mechanisms controlling neurogenesis and direct neuronal reprogramming
9
作者 Elsa Papadimitriou Dimitra Thomaidou 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1929-1939,共11页
Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches.A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells ... Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches.A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells towards the neuronal state is achieved due to sophisticated mechanisms of epigenetic,transcriptional,and post-transcriptional regulation.Understanding these neurogenic mechanisms is of major importance,not only for shedding light on very complex and crucial developmental processes,but also for the identification of putative reprogramming factors,that harbor hierarchically central regulatory roles in the course of neurogenesis and bare thus the capacity to drive direct reprogramming towards the neuronal fate.The major transcriptional programs that orchestrate the neurogenic process have been the focus of research for many years and key neurogenic transcription factors,as well as repressor complexes,have been identified and employed in direct reprogramming protocols to convert non-neuronal cells,into functional neurons.The post-transcriptional regulation of gene expression during nervous system development has emerged as another important and intricate regulatory layer,strongly contributing to the complexity of the mechanisms controlling neurogenesis and neuronal function.In particular,recent advances are highlighting the importance of specific RNA binding proteins that control major steps of mRNA life cycle during neurogenesis,such as alternative splicing,polyadenylation,stability,and translation.Apart from the RNA binding proteins,microRNAs,a class of small non-coding RNAs that block the translation of their target mRNAs,have also been shown to play crucial roles in all the stages of the neurogenic process,from neural stem/progenitor cell proliferation,neuronal differentiation and migration,to functional maturation.Here,we provide an overview of the most prominent post-transcriptional mechanisms mediated by RNA binding proteins and microRNAs during the neurogenic process,giving particular emphasis on the interplay of specific RNA binding proteins with neurogenic microRNAs.Taking under consideration that the molecular mechanisms of neurogenesis exert high similarity to the ones driving direct neuronal reprogramming,we also discuss the current advances in in vitro and in vivo direct neuronal reprogramming approaches that have employed microRNAs or RNA binding proteins as reprogramming factors,highlighting the so far known mechanisms of their reprogramming action. 展开更多
关键词 direct neuronal reprogramming in vivo glia-to-neuron conversion microRNAs neurogenesis post-transcriptional regulation RNA binding proteins
下载PDF
Repetitive traumatic brain injury–induced complement C1–related inflammation impairs long-term hippocampal neurogenesis
10
作者 Jing Wang Bing Zhang +9 位作者 Lanfang Li Xiaomei Tang Jinyu Zeng Yige Song Chao Xu Kai Zhao Guoqiang Liu Youming Lu Xinyan Li Kai Shu 《Neural Regeneration Research》 SCIE CAS 2025年第3期821-835,共15页
Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In ... Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In this study,we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury.Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development,delayed neuronal maturation,and reduced the complexity of neuronal dendrites and spines.Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval.Moreover,following repetitive traumatic brain injury,neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased,C1q binding protein levels were decreased,and canonical Wnt/β-catenin signaling was downregulated.An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function.These findings suggest that repetitive traumatic brain injury–induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction. 展开更多
关键词 complement C1 dendrite dentate gyrus hippocampus neural stem cell neurogenesis NEUROINFLAMMATION neurological function neuron traumatic brain injury
下载PDF
Rbm8a regulates neurogenesis and reduces Alzheimer's disease-associated pathology in the dentate gyrus of 5×FAD mice
11
作者 Chenlu Zhu Xiao Ren +2 位作者 Chen Liu Yawei Liu Yonggang Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期863-871,共9页
Alzheimer’s disease is a prevalent and debilitating neurodegenerative condition that profoundly affects a patient’s daily functioning with progressive cognitive decline,which can be partly attributed to impaired hip... Alzheimer’s disease is a prevalent and debilitating neurodegenerative condition that profoundly affects a patient’s daily functioning with progressive cognitive decline,which can be partly attributed to impaired hippocampal neurogenesis.Neurogenesis in the hippocampal dentate gyrus is likely to persist throughout life but declines with aging,especially in Alzheimer’s disease.Recent evidence indicated that RNA-binding protein 8A(Rbm8a)promotes the proliferation of neural progenitor cells,with lower expression levels observed in Alzheimer’s disease patients compared with healthy people.This study investigated the hypothesis that Rbm8a overexpression may enhance neurogenesis by promoting the proliferation of neural progenitor cells to improve memory impairment in Alzheimer’s disease.Therefore,Rbm8a overexpression was induced in the dentate gyrus of 5×FAD mice to validate this hypothesis.Elevated Rbm8a levels in the dentate gyrus triggered neurogenesis and abated pathological phenotypes(such as plaque formation,gliosis reaction,and dystrophic neurites),leading to ameliorated memory performance in 5×FAD mice.RNA sequencing data further substantiated these findings,showing the enrichment of differentially expressed genes involved in biological processes including neurogenesis,cell proliferation,and amyloid protein formation.In conclusion,overexpressing Rbm8a in the dentate gyrus of 5×FAD mouse brains improved cognitive function by ameliorating amyloid-beta-associated pathological phenotypes and enhancing neurogenesis. 展开更多
关键词 Adora2a Alzheimer’s disease ASTROCYTE cAMP signaling pathway dentate gyrus dystrophic neurites MICROGLIA neurogenesis PLAQUE Rbm8a
下载PDF
Potential role of tanycyte-derived neurogenesis in Alzheimer's disease
12
作者 Guibo Qi Han Tang +2 位作者 Jianian Hu Siying Kang Song Qin 《Neural Regeneration Research》 SCIE CAS 2025年第6期1599-1612,共14页
Tanycytes, specialized ependymal cells located in the hypothalamus, play a crucial role in the generation of new neurons that contribute to the neural circuits responsible for regulating the systemic energy balance. T... Tanycytes, specialized ependymal cells located in the hypothalamus, play a crucial role in the generation of new neurons that contribute to the neural circuits responsible for regulating the systemic energy balance. The precise coordination of the gene networks controlling neurogenesis in naive and mature tanycytes is essential for maintaining homeostasis in adulthood. However, our understanding of the molecular mechanisms and signaling pathways that govern the proliferation and differentiation of tanycytes into neurons remains limited. This article aims to review the recent advancements in research into the mechanisms and functions of tanycyte-derived neurogenesis. Studies employing lineage-tracing techniques have revealed that the neurogenesis specifically originating from tanycytes in the hypothalamus has a compensatory role in neuronal loss and helps maintain energy homeostasis during metabolic diseases. Intriguingly,metabolic disorders are considered early biomarkers of Alzheimer's disease. Furthermore,the neurogenic potential of tanycytes and the state of newborn neurons derived from tanycytes heavily depend on the maintenance of mild microenvironments, which may be disrupted in Alzheimer's disease due to the impaired blood–brain barrier function.However, the specific alterations and regulatory mechanisms governing tanycyte-derived neurogenesis in Alzheimer's disease remain unclear. Accumulating evidence suggests that tanycyte-derived neurogenesis might be impaired in Alzheimer's disease, exacerbating neurodegeneration. Confirming this hypothesis, however, poses a challenge because of the lack of long-term tracing and nucleus-specific analyses of newborn neurons in the hypothalamus of patients with Alzheimer's disease. Further research into the molecular mechanisms underlying tanycyte-derived neurogenesis holds promise for identifying small molecules capable of restoring tanycyte proliferation in neurodegenerative diseases. This line of investigation could provide valuable insights into potential therapeutic strategies for Alzheimer's disease and related conditions. 展开更多
关键词 Alzheimer's disease blood–brain barrier ependymoglial cells HYPOTHALAMUS metabolic diseases neural stem cells neurogenesis neuroinflammatory diseases NEURONS TANYCYTE
下载PDF
Neurogenesis dynamics in the olfactory bulb:deciphering circuitry organization, function, and adaptive plasticity
13
作者 Moawiah M.Naffaa 《Neural Regeneration Research》 SCIE CAS 2025年第6期1565-1581,共17页
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inh... Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior. 展开更多
关键词 network adaptability neurogenesis neuronal communication olfactory bulb olfactory learning olfactory memory synaptic plasticity
下载PDF
Role of the histone methyltransferases Ezh2 and Suv4-20h1/Suv4-20h2 in neurogenesis 被引量:1
14
作者 Christopher T.Rhodes Chin-Hsing Annie Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期469-473,共5页
Mechanisms regulating neurogenesis involve broad and complex processes that represent intriguing therapeutic targets in the field of regenerative medicine.One influential factor guiding neural stem cell proliferation ... Mechanisms regulating neurogenesis involve broad and complex processes that represent intriguing therapeutic targets in the field of regenerative medicine.One influential factor guiding neural stem cell proliferation and cellular differentiation during neurogenesis are epigenetic mechanisms.We present an overview of epigenetic mechanisms including chromatin structure and histone modifications;and discuss novel roles of two histone modifiers,Ezh2 and Suv4-20h1/Suv4-20h2(collectively referred to as Suv4-20h),in neurodevelopment and neurogenesis.This review will focus on broadly reviewing epigenetic regulatory components,the roles of epigenetic components during neurogenesis,and potential applications in regenerative medicine. 展开更多
关键词 adult neurogenesis EPIGENETIC EZH2 histone co-regulation histone modification NEURODEVELOPMENT neurogenesis regenerative medicine Suv4-20h
下载PDF
Melatonin:a multitasking indoleamine to modulate hippocampal neurogenesis 被引量:3
15
作者 Alejandro Romero JoséÁngel Morales-García Eva Ramos 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期503-505,共3页
Neurodegeneration affects a large number of cell types including neurons,astrocytes or oligodendrocytes,and neural stem cells.Neural stem cells can generate new neuronal populations through proliferation,migration,and... Neurodegeneration affects a large number of cell types including neurons,astrocytes or oligodendrocytes,and neural stem cells.Neural stem cells can generate new neuronal populations through proliferation,migration,and differentiation.This neurogenic potential may be a relevant factor to fight neurodegeneration and aging.In the last years,we can find growing evidence suggesting that melatonin may be a potential modulator of adult hippocampal neurogenesis.The lack of therapeutic strategies targeting neurogenesis led researchers to explore new molecules.Numerous preclinical studies with melatonin observed how melatonin can modulate and enhance molecular and signaling pathways involved in neurogenesis.We made a special focus on the connection between these modulation mechanisms and their implication in neurodegeneration,to summarize the current knowledge and highlight the therapeutic potential of melatonin. 展开更多
关键词 adult hippocampal neurogenesis aging MELATONIN neural stem cell NEURODEGENERATION NEUROPROTECTION signaling pathway therapeutic strategy
下载PDF
Inhibition of Notch 1 signaling in the subacute stage after stroke promotes striatal astrocyte-derived neurogenesis 被引量:3
16
作者 Xiao-Zhu Hao Cheng-Feng Sun +5 位作者 Lu-Yi Lin Chan-Chan Li Xian-Jing Zhao Min Jiang Yan-Mei Yang Zhen-Wei Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1777-1781,共5页
Inhibition of Notch1 signaling has been shown to promote astrocyte-derived neurogenesis after stroke.To investigate the regulatory role of Notch1 signaling in this process,in this study,we used a rat model of stroke b... Inhibition of Notch1 signaling has been shown to promote astrocyte-derived neurogenesis after stroke.To investigate the regulatory role of Notch1 signaling in this process,in this study,we used a rat model of stroke based on middle cerebral artery occlusion and assessed the behavior of reactive astrocytes post-stroke.We used theγ-secretase inhibitor N-[N-(3,5-diuorophenacetyl)-1-alanyl]-S-phenylglycine t-butylester(DAPT)to block Notch1 signaling at 1,4,and 7 days after injury.Our results showed that only administration of DAPT at 4 days after stroke promoted astrocyte-derived neurogenesis,as manifested by recovery of white matter fiber bundle integrity on magnetic resonance imaging,which is consistent with recovery of neurologic function.These findings suggest that inhibition of Notch1 signaling at the subacute stage post-stroke mediates neural repair by promoting astrocyte-derived neurogenesis. 展开更多
关键词 ASTROCYTE diffusion kurtosis imaging magnetic resonance imaging middle cerebral artery occlusion N-[N-(3 5-diuorophenacetyl)-1-alanyl]-Sphenylglycine t-butylester neural repair neurogenesis neuron Notch1 signaling subacute stage
下载PDF
Oscillating field stimulation promotes neurogenesis of neural stem cells through miR-124/Tal1 axis to repair spinal cord injury in rats 被引量:1
17
作者 Chao Fang Jian Sun +1 位作者 Jun Qian Cai-Liang Shen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期895-900,共6页
Spinal cord injury often leads to severe motor and sensory deficits,and prognosis using the currently available therapies remains poor.Therefore,we aimed to explore a novel therapeutic approach for improving the progn... Spinal cord injury often leads to severe motor and sensory deficits,and prognosis using the currently available therapies remains poor.Therefore,we aimed to explore a novel therapeutic approach for improving the prognosis of spinal cord injury.In this study,we implanted oscillating field stimulation devices and transplanted neural stem cells into the thoracic region(T9–T10)of rats with a spinal cord contusion.Basso-Beattie-Bresnahan scoring revealed that oscillating field stimulation combined with neural stem cells transplantation promoted motor function recovery following spinal cord injury.In addition,we investigated the regulation of oscillating field stimulation on the miR-124/Tal1 axis in neural stem cells.Transfection of lentivirus was performed to investigate the role of Tal1 in neurogenesis of neural stem cells induced by oscillating field stimulation.Quantitative reverse transcription-polymerase chain reaction,immunofluorescence and western blotting showed that oscillating field stimulation promoted neurogenesis of neural stem cells in vitro and in vivo.Hematoxylin and eosin staining showed that oscillating field stimulation combined with neural stem cells transplantation alleviated cavities formation after spinal cord injury.Taking the results together,we concluded that oscillating field stimulation decreased miR-124 expression and increased Tal1 content,thereby promoting the neurogenesis of neural stem cells.The combination of oscillating field stimulation and neural stem cells transplantation improved neurogenesis,and thereby promoted structural and functional recovery after spinal cord injury. 展开更多
关键词 miR-124 neural stem cell neurogenesis oscillating field stimulation recovery spinal cord injury Tal1 tissue repair TRANSPLANTATION
下载PDF
Transient neurogenesis in ischemic cortex from Sox2^(+)astrocytes
18
作者 Jia-Lei Yang Hong Fan +10 位作者 Fan-Fan Fu Bao-Lin Guo Ying Huang Li Sun Wen-Ting Wang Jun-Ling Xing Xin-Tian Hu Yu-Qiang Ding Kun Zhang Ying-Zhou Hu Ya-Zhou Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1521-1526,共6页
The adult cortex has long been regarded as non-neurogenic.Whether injury can induce neurogenesis in the adult cortex is still controversial.Here,we report that focal ischemia stimulates a transient wave of local neuro... The adult cortex has long been regarded as non-neurogenic.Whether injury can induce neurogenesis in the adult cortex is still controversial.Here,we report that focal ischemia stimulates a transient wave of local neurogenesis.Using 5′-bromo-2′-deoxyuridine labeling,we demonstrated a rapid generation of doublecortin-positive neuroblasts that died quickly in mouse cerebral cortex following ischemia.Nestin-Cre^(ER)-based cell ablation and fate mapping showed a small contribution of neuroblasts by subventricular zone neural stem cells.Using a mini-photothrombotic ischemia mouse model and retrovirus expressing green fluorescent protein labeling,we observed maturation of locally generated new neurons.Furthermore,fate tracing analyses using PDGFRα-,GFAP-,and Sox2-Cre^(ER) mice showed a transient wave of neuroblast generation in mild ischemic cortex and identified that Sox2-positive astrocytes were the major neurogenic cells in adult cortex.In addition,a similar upregulation of Sox2 and appearance of neuroblasts were observed in the focal ischemic cortex of Macaca mulatta.Our findings demonstrated a transient neurogenic response of Sox2-positive astrocytes in ischemic cortex,which suggests the possibility of inducing neuronal regeneration by amplifying this intrinsic response in the future. 展开更多
关键词 adult ASTROCYTE CORTEX fate-mapping ischemia local neurogenesis neural stem cells SOX2
下载PDF
Dysregulation of neurogenesis by neuroinflammation:key differences in neurodevelopmental and neurological disorders 被引量:3
19
作者 Lir-Wan Fan Yi Pang 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第3期366-371,共6页
Embryonic neurogenesis is the process of generating neurons,the functional units of the brain.Because of its sensitivity to adverse intrauterine environment such as infection,dysregulation of this process has emerged ... Embryonic neurogenesis is the process of generating neurons,the functional units of the brain.Because of its sensitivity to adverse intrauterine environment such as infection,dysregulation of this process has emerged as a key mechanism underlying many neurodevelopmental disorders such as autism spectrum disorders(ASD).Adult neurogenesis,although is restricted to a few neurogenic niches,plays pivotal roles in brain plasticity and repair.Increasing evidence suggests that impairments in adult neurogenesis are involved in major neurodegenerative disorders such as Alzheimer's disease.A hallmark feature of these brain disorders is neuroinflammation,which can either promote or inhibit neurogenesis depending upon the context of brain microenvironment.In this review paper,we present evidence from both experimental and human studies to show a complex picture of relationship between these two events,and discussed potential factors contributing to different or even opposing actions of neuroinflammation on neurogenesis in neurodevelopmental and neurological disorders. 展开更多
关键词 microglia NEURODEGENERATION AUTISM embryonic neurogenesis adult neurogenesis cytokine aging
下载PDF
Features of adult neurogenesis and neurochemical signaling in the Cherry salmon Oncorhynchus masou brain 被引量:1
20
作者 Evgeniya V. Pushchina Dmitry K. Obukhov Anatoly A. Varaksin 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第1期13-23,共11页
We investigated the distribution of gamma aminobutyric acid, tyrosine hydroxylase and nitric oxide-producing elements in a cherry salmon Oncorhynchus masou brain at various stages of postnatal ontogenesis by immunohis... We investigated the distribution of gamma aminobutyric acid, tyrosine hydroxylase and nitric oxide-producing elements in a cherry salmon Oncorhynchus masou brain at various stages of postnatal ontogenesis by immunohistochemical staining and histochemical staining. The periventricular region cells exhibited the morphology of neurons and glia including radial glia-like cells and contained several neurochemical substances. Heterogeneous populations of tyrosine hydroxylase-, gamma aminobutyric acid-immunoreactive, as well as nicotinamide adenine dinucleotide phosphate diaphorase-positive cells were observed in proliferating cell nuclear antigen-immunoreactive proliferative zones in periventricular area of diencephalon, central grey layer of dorsomedial tegmentum, medulla and spinal cord. Immunolocalization of Pax6 in the cherry salmon brain revealed a neuromeric construction of the brain at various stages of postnatal ontogenesis, and this was confirmed by tyrosine hydroxylase and gamma aminobutyric acid labeling. 展开更多
关键词 neural regeneration neurogenesis TELEOSTEI adult neurogenesis neurotransmitter signaling migration tyrosine hydroxylase gamma aminobutyric acid development PAX6 NADPH-DIAPHORASE proliferation grant-supported paper neuroregeneration
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部