The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central n...The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channelspecific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood–brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.展开更多
Despite modern medicine’s advancements,age-related neurological diseases like Alzheimer’s disease and Parkinson’s disease remain challenging due to high costs,side effects,and limited accessibility.Ayurveda,a tradi...Despite modern medicine’s advancements,age-related neurological diseases like Alzheimer’s disease and Parkinson’s disease remain challenging due to high costs,side effects,and limited accessibility.Ayurveda,a traditional Indian medicine system,offers Kadha tea as a potential herbal option.This review explores Kadha’s components(basil(Ocimum basilicum L.),black pepper(Piper nigrum L.),Cinnamon(Cinnamomum verum J.Presl),ginger(Zingiber officinale Roscoe),and raisin(Vitis vinifera L.))and their interaction with various neurological disorders.Studies suggest Kadha exhibits anti-inflammatory,antioxidant,and antiviral properties,potentially impacting Alzheimer’s disease,Parkinson’s disease,neurotoxicity,neuroinflammation,and brain trauma.By focusing on specific disease mechanisms and Kadha’s intergrade effects,this review aims to elucidate its potential role in managing age-related neurological disorders.展开更多
Background: VANGL2 plays a variety of roles in various cellular processes, including tissue morphogenesis, asymmetric cell division, and nervous system development. There is currently a lack of systematic organization...Background: VANGL2 plays a variety of roles in various cellular processes, including tissue morphogenesis, asymmetric cell division, and nervous system development. There is currently a lack of systematic organization in the development and disease of the nervous system. Purpose: To explore the role of VANGL2 in the development of the nervous system and related diseases. Methods: Literature review and analysis of the role of VANGL2 in the development and disease of the nervous system. Results: VANGL2 defects lead to the development of the nervous system through the misconfiguration of various cells, which affects the development of the cochlea, the conduction of neural signals, and the development of nervous system-related diseases such as Alzheimer’s disease, GBM, Bohling-Opitz syndrome, and hydrocephalus. Conclusions: The VANGL2 gene is essential for nervous system development and its deficiency is linked to severe congenital conditions and various disorders, highlighting the need for more research on treatments for related gene defects.展开更多
Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein functio...Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein function or structure,understanding their genetic basis is crucial for accurate diagnosis and targeted therapies.To investigate the underlying pathogenesis of these conditions,researchers often use non-mammalian model organisms,such as Drosophila(fruit flies),which is valued for their genetic manipulability,cost-efficiency,and preservation of genes and biological functions across evolutionary time.Genetic tools available in Drosophila,including CRISPR-Cas9,offer a means to manipulate gene expression,allowing for a deep exploration of the genetic underpinnings of rare neurological diseases.Drosophila boasts a versatile genetic toolkit,rapid generation turnover,and ease of large-scale experimentation,making it an invaluable resource for identifying potential drug candidates.Researchers can expose flies carrying disease-associated mutations to various compounds,rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and,ultimately,clinical trials.In this comprehensive review,we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis,pathophysiology,and potential therapeutic implications.We discuss rare diseases associated with both neuron-expressed and glial-expressed genes.Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay,mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay,and mutations in IRF2BPL causing seizures,a neurodevelopmental disorder with regression,loss of speech,and abnormal movements.And we explore mutations in EMC1 related to cerebellar atrophy,visual impairment,psychomotor retardation,and gain-of-function mutations in ACOX1 causing Mitchell syndrome.Loss-of-function mutations in ACOX1 result in ACOX1 deficiency,characterized by very-long-chain fatty acid accumulation and glial degeneration.Notably,this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology,offering a platform for the rapid identification of potential therapeutic interventions.Rare neurological diseases involve a wide range of expression systems,and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia.Furthermore,mutations within the same gene may result in varying functional outcomes,such as complete loss of function,partial loss of function,or gain-of-function mutations.The phenotypes observed in patients can differ significantly,underscoring the complexity of these conditions.In conclusion,Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases.By facilitating the modeling of these conditions,Drosophila contributes to a deeper understanding of their genetic basis,pathophysiology,and potential therapies.This approach accelerates the discovery of promising drug candidates,ultimately benefiting patients affected by these complex and understudied diseases.展开更多
Deep transcranial magnetic stimulation(DTMS)is a new non-invasive neuromodulation technique based on repetitive transcranial magnetic stimulation technology.The new H-coil has significant advantages in the treatment a...Deep transcranial magnetic stimulation(DTMS)is a new non-invasive neuromodulation technique based on repetitive transcranial magnetic stimulation technology.The new H-coil has significant advantages in the treatment and mechanism research of psychiatric and neurological disorders.This is due to its deep stimulation site and wide range of action.This paper reviews the clinical progress of DTMS in psychiatric and neurological disorders such as Parkinson’s disease,Alzheimer’s disease,post-stroke motor dysfunction,aphasia,and other neurological disorders,as well as anxiety,depression,and schizophrenia.展开更多
Background and object:The burden of neurological disorders in India is expected to increase due to the rapid demographic and epidemiological transition,with irrational drug use,which is also a global concern.Thus,drug...Background and object:The burden of neurological disorders in India is expected to increase due to the rapid demographic and epidemiological transition,with irrational drug use,which is also a global concern.Thus,drug utilization evaluation is designed to ensure appropriate medicine use within the healthcare settings.The aim of the study was to assess the rate and pattern of drug utilization in the management of neurological disorders.Materials and methods:A hospital-based cross-sectional drug utilization evaluation study on neurological drugs was carried out at the Department of Neurology over a span of six months.All legible prescriptions consisting neurological medications irrespective of patient's gender,aged≥18 years were included for the study.The World Health Organization(WHO)core drug use indicators were used to assess the drug prescribing and utilization patterns.Results:A total of 310 prescriptions were reviewed,where male predominance was found to be 56.45%.Out of 310 prescriptions,drugs belonging to 26 neurological classes were prescribed for the management of various neurological disorders.The majority of patients were diagnosed with epilepsy and the most prescribed drugs per patient were phenytoin(14.8%)and valproic acid(6.45%).By following the WHO core drug prescribing indicators,65.47%of drugs prescribed from the India National List of Essential Medicines,2022,followed by 29.83%of drugs prescribed in generic name and 10.86%of prescriptions including injections.Conclusion:The study findings showed that the prescribing pattern in the Department of Neurology was in accordance with the WHO core prescribing indicators.But,the extent of polypharmacy prescriptions was very high.Therefore,interventions are very necessary to promote rational drug prescribing patterns and thus clinical pharmacists can contribute to assess and review the drug utilization pattern to optimize the drug therapy and improvement in patient safety.展开更多
The central nervous system(CNS)is a reservoir of immune privilege.Specialized immune glial cells are responsible for maintenance and defense against foreign invaders.The blood–brain barrier(BBB)prevents detrimental p...The central nervous system(CNS)is a reservoir of immune privilege.Specialized immune glial cells are responsible for maintenance and defense against foreign invaders.The blood–brain barrier(BBB)prevents detrimental pathogens and potentially overreactive immune cells from entering the periphery.When the double-edged neuroinflammatory response is overloaded,it no longer has the protective function of promoting neuroregeneration.Notably,microbiota and its derivatives may emerge as pathogen-associated molecular patterns of brain pathology,causing microbiome–gut–brain axis dysregulation from the bottom-up.When dysbiosis of the gastrointestinal flora leads to subsequent alterations in BBB permeability,peripheral immune cells are recruited to the brain.This results in amplification of neuroinflammatory circuits in the brain,which eventually leads to specific neurological disorders.Aggressive treatment strategies for gastrointestinal disorders may protect against specific immune responses to gastrointestinal disorders,which can lead to potential protective effects in the CNS.Accordingly,this study investigated the mutual effects of microbiota and the gut–brain axis,which may provide targeting strategies for future disease treatment.展开更多
Background: Autoimmune diseases, which are among the leading causes of morbidity and mortality in the world, are pathologies caused by a dysfunction of the immune system. They can affect the central nervous system, th...Background: Autoimmune diseases, which are among the leading causes of morbidity and mortality in the world, are pathologies caused by a dysfunction of the immune system. They can affect the central nervous system, the peripheral nervous system or both nervous systems. Objectives: To describe the epidemiological, clinical, paraclinical, therapeutic and evolutive aspects of neurological disorders related to autoimmune diseases. Methods: This was a prospective cohort study. It was carried out from 1 January 2015 to 31 December 2019 (5 years). It focused on patients aged 15 years and above, who were hospitalized or followed as ambulatory patients for neurological disorders related to autoimmune diseases in the neurology department of the university teaching hospital in Brazzaville. Results: Among the 41 patients who fulfilled inclusion criteria, there were 29 (70.73%) women and 12 (29.27%) men. The average age of patients was 38.3 ± 13.8 years. An increase in the frequency of neurological disorders related to autoimmune diseases was observed every year. The main neurological disorders were neuromyelitis optica spectrum disorders (n = 14;34.15%), acute polyradiculoneuropathies (n = 13;31.71%), chronic polyradiculoneuropathies (n = 4;9.75%) and acute disseminated encephalomyelitis (n = 3;7.31%). The treatments administered, which consisted of corticosteroids and immunosuppressive drugs, had significantly improved the vital prognosis and functional status of patients (p = 0.025). Conclusion: In our study population, neurological disorders related to autoimmune diseases are rare. The neurological clinico-pathological entities diagnosed are similar to those reported in the literature. The therapeutic approaches used improve the quality of life of patients.展开更多
Background: Many children in Nigeria suffer from detrimental, debilitating and lifelong neurologic disorders, many of which are highly preventable using simple, cost-effective interventions. Objective: To examine the ...Background: Many children in Nigeria suffer from detrimental, debilitating and lifelong neurologic disorders, many of which are highly preventable using simple, cost-effective interventions. Objective: To examine the pattern of neurological disorders among children presenting at the neurology unit of Chukwuemeka Odumegwu Ojukwu University Teaching Hospital Amaku, Awka, Nigeria. Methods: A retrospective review of the hospital records of children who presented at the Paediatric Neurology Unit between 1st March 2020 and 31st March 2022 was carried out. Data were abstracted using a proforma and analyzed using SPSS Version 21. Results: A total of 138 children aged 0 to 15 years were seen in the unit during the period under review. 115 (83.35%) of these children were diagnosed with chronic neurological disorders. Those with chronic neurological disorders had a male:female ratio of 1.9:1, and the majority (65%) of them were below 5 years of age. The most common presenting complaints were delayed milestones (43.4%), seizures (23.8%), and speech disorders (17.2%). The most typical diagnosis was cerebral palsy (CP) (34.7%), seizure disorder (29.8%) and attention deficit hyperactivity disorder (8.9%). Perinatal asphyxia (47.7%), neonatal jaundice (17.0%) and central nervous system infections (CNS) infections (12.5%) were identified as the major risk factors responsible for these neurologic disorders. Conclusion: Cerebral palsy and seizure disorders constitute the major neurological disorders among children seen in our institution. Efforts should be intensified at reducing the incidence and impact of perinatal asphyxia, neonatal jaundice and CNS infections, identified as the major culprits, to curb the menace of these debilitating lifelong neurologic sequelae.展开更多
Extraintestinal manifestations occur in about one-third of patients living with inflammatory bowel disease(IBD) and may precede the onset of gastrointestinal symptoms by many years. Neurologic disorders associated wit...Extraintestinal manifestations occur in about one-third of patients living with inflammatory bowel disease(IBD) and may precede the onset of gastrointestinal symptoms by many years. Neurologic disorders associated with IBD are not frequent, being reported in 3% of patients, but they often represent an important cause of morbidity and a relevant diagnostic issue. In addition, the increasing use of immunosuppressant and biological therapies for IBD may also play a pivotal role in the development of neurological disorders of different type and pathogenesis. Hence, we provide a complete and profound review of the main features of neurological complications associated with IBD, with particular reference to those related to drugs and with a specific focus on their clinical presentation and possible pathophysiological mechanisms.展开更多
Mesenchymal stem cells are multipotent cells that possess anti-inflammatory,antiapoptotic and immunomodulatory properties.The effects of existing drugs for neurodegenerative disorders such as Alzheimer’s disease are ...Mesenchymal stem cells are multipotent cells that possess anti-inflammatory,antiapoptotic and immunomodulatory properties.The effects of existing drugs for neurodegenerative disorders such as Alzheimer’s disease are limited,thus mesenchymal stem cell therapy has been anticipated as a means of ameliorating neuronal dysfunction.Since mesenchymal stem cells are known to scarcely differentiate into neuronal cells in damaged brain after transplantation,paracrine factors secreted from mesenchymal stem cells have been suggested to exert therapeutic effects.Extracellular vesicles and exosomes are small vesicles released from mesenchymal stem cells that contain various molecules,including proteins,mRNAs and microRNAs.In recent years,administration of exosomes/extracellular vesicles in models of neurological disorders has been shown to improve neuronal dysfunctions,via exosomal transfer into damaged cells.In addition,various microRNAs derived from mesenchymal stem cells that regulate various genes and reduce neuropathological changes in various neurological disorders have been identified.This review summarizes the effects of exosomes/extracellular vesicles and exosomal microRNAs derived from mesenchymal stem cells on models of stroke,subarachnoid and intracerebral hemorrhage,traumatic brain injury,and cognitive impairments,including Alzheimer’s disease.展开更多
It is well known that the gut microbiota plays an extremely important role in modulating host physiological functions such as immunity and metabolic homeostasis.In recent years,accumulated evidence has revealed that t...It is well known that the gut microbiota plays an extremely important role in modulating host physiological functions such as immunity and metabolic homeostasis.In recent years,accumulated evidence has revealed that the gut microbiota can regulate the functions of the central nervous system(CNS)through the gut-brain axis,which provides a novel insight into the interactions between the gut and brain.This review focuses on the molecular mechanism of the crosstalk between the gut microbiota and the brain via the gut-brain axis,and on the onset and development of neurological disorders triggered by gut microbiota dysbiosis.These topics are followed by a critical analysis of potential intervention strategies targeting gut microbiota dysbiosis,including the use of probiotics,prebiotics,synbiotics,and diets.While research on the microbiota-gut-brain axis is still in its relative infancy,clarifying the molecular mechanism that underlies how the gut microbiota regulates neurological functions not only holds the promise of revealing potentially novel pathogeneses of neurological disorders,but also may lead to the development of potential diagnosis biomarkers and intervention strategies targeting microbiota dysbiosis for neurological disorders.展开更多
The kallikrein-kinin system(KKS) is an intricate endogenous pathway involved in several physiological and pathological cascades in the brain. Due to the pathological effects of kinins in blood vessels and tissues, the...The kallikrein-kinin system(KKS) is an intricate endogenous pathway involved in several physiological and pathological cascades in the brain. Due to the pathological effects of kinins in blood vessels and tissues, their formation and degradation are tightly controlled. Their components have been related to several central nervous system diseases such as stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy and others. Bradykinin and its receptors(B1R and B2R) may have a role in the pathophysiology of certain central nervous system diseases. It has been suggested that kinin B1R is up-regulated in pathological conditions and has a neurodegenerative pattern, while kinin B2R is constitutive and can act as a neuroprotective factor in many neurological conditions. The renin angiotensin system(RAS) is an important blood pressure regulator and controls both sodium and water intake. AngⅡ is a potent vasoconstrictor molecule and angiotensin converting enzyme is the major enzyme responsible for its release. AngⅡ acts mainly on the AT1 receptor, with involvement in several systemic and neurological disorders. Brain RAS has been associated with physiological pathways, but is also associated with brain disorders. This review describes topics relating to the involvement of both systems in several forms of brain dysfunction and indicates components of the KKS and RAS that have been used as targets in several pharmacological approaches.展开更多
Neurologic impairments are usually irreversible as a result of limited regeneration in the central nervous system.Therefore,based on the regenerative capacity of stem cells,transplantation therapies of various stem ce...Neurologic impairments are usually irreversible as a result of limited regeneration in the central nervous system.Therefore,based on the regenerative capacity of stem cells,transplantation therapies of various stem cells have been tested in basic research and preclinical trials,and some have shown great prospects.This manuscript overviews the cellular and molecular characteristics of embryonic stem cells,induced pluripotent stem cells,neural stem cells,retinal stem/progenitor cells,mesenchymal stem/stromal cells,and their derivatives in vivo and in vitro as sources for regenerative therapy.These cells have all been considered as candidates to treat several major neurological disorders and diseases,owing to their self-renewal capacity,multi-directional differentiation,neurotrophic properties,and immune modulation effects.We also review representative basic research and recent clinical trials using stem cells for neurodegenerative diseases,including Parkinson's disease,Alzheimer's disease,and age-related macular degeneration,as well as traumatic brain injury and glioblastoma.In spite of a few unsuccessful cases,risks of tumorigenicity,and ethical concerns,most results of animal experiments and clinical trials demonstrate efficacious therapeutic effects of stem cells in the treatment of nervous system disease.In summary,these emerging findings in regenerative medicine are likely to contribute to breakthroughs in the treatment of neurological disorders.Thus,stem cells are a promising candidate for the treatment of nervous system diseases.展开更多
Although therapeutic potential of neurotrophic factors(NTFs)has been well recognized for over two decades,attempts to translate that potential to the clinic have been disappointing,largely due to significant obstacle...Although therapeutic potential of neurotrophic factors(NTFs)has been well recognized for over two decades,attempts to translate that potential to the clinic have been disappointing,largely due to significant obstacles in delivery,including inadequate protein dose/kinetics released at target sites.Considerable efforts have been made to improve the therapeutic performance of NTFs.This articles reviews recent developments in localized delivery systems of NTFs for the neurological disorders treatments with a main focus on sustained delivery strategies.Different non-covalent binding approaches have been employed to immobilize proteins in hydrogels,microspheres,electrospun nanofibers,and their combined systems,which serve as depots for sustained local release of NTFs.The challenges associated with current NTFs delivery systems and how these systems can be applied to neurological diseases and disorders have been discussed in the review.In conclusion,optimal delivery systems for NTFs will be needed for reliable and meaningful clinical benefits;ideally,delivering a time and dose-controlled release of bioactive multiNTFs at different individual optimal kinetics to achieve multi-functions in target tissues is significant preferred.展开更多
Several diseases have been successfully modeled since the development of induced pluripotent stem cell(i PSC) technology in 2006. Since then, methods for increased reprogramming efficiency and cell culture maintenance...Several diseases have been successfully modeled since the development of induced pluripotent stem cell(i PSC) technology in 2006. Since then, methods for increased reprogramming efficiency and cell culture maintenance have been optimized and many protocols for differentiating stem cell lines have been successfully developed, allowing the generation of several cellular subtypes in vitro. Gene editing technologies have also greatly advanced lately, enhancing disease-specific phenotypes by creating isogenic cell lines, allowing mutations to be corrected in affected samples or inserted in control lines. Neurological disorders have benefited the most from i PSC-disease modeling for its capability for generating disease-relevant cell types in vitro from the central nervous system, such as neurons and glial cells, otherwise only available from post-mortem samples. Patient-specific i PSC-derived neural cells can recapitulate the phenotypes of these diseases and therefore, considerably enrich our understanding of pathogenesis, disease mechanism and facilitate the development of drug screening platforms for novel therapeutic targets. Here, we review the accomplishments and the current progress in human neurological disorders by using i PSC modeling for Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal muscular atrophy, amyotrophic lateral sclerosis, duchenne muscular dystrophy, schizophrenia and autism spectrum disorders, which include Timothy syndrome, Fragile X syndrome, Angelman syndrome, Prader-Willi syndrome, PhelanMc Dermid, Rett syndrome as well as Nonsyndromic Autism.展开更多
Random noise stimulation technique involves applying any form of energy(for instance,light,mechanical,electrical,sound)with unpredictable intensities through time to the brain or sensory receptors to enhance sensory,m...Random noise stimulation technique involves applying any form of energy(for instance,light,mechanical,electrical,sound)with unpredictable intensities through time to the brain or sensory receptors to enhance sensory,motor,or cognitive functions.Random noise stimulation initially employed mechanical noise in auditory and cutaneous stimuli,but electrical energies applied to the brain or the skin are becoming more frequent,with a series of clinical applications.Indeed,recent evidence shows that transcranial random noise stimulation can increase corticospinal excitability,improve cognitive/motor performance,and produce beneficial aftereffects at the behavioral and psychological levels.Here,we present a narrative review about the potential uses of random noise stimulation to treat neurological disorders,including attention deficit hyperactivity disorder,schizophrenia,amblyopia,myopia,tinnitus,multiple sclerosis,post-stroke,vestibular-postural disorders,and sensitivity loss.Many of the reviewed studies reveal that the optimal way to deliver random noise stimulation-based therapies is with the concomitant use of neurological and neuropsychological assessments to validate the beneficial aftereffects.In addition,we highlight the requirement of more randomized controlled trials and more physiological studies of random noise stimulation to discover another optimal way to perform the random noise stimulation interventions.展开更多
Neurological disorders are amongst the most widely studied human aliments.Yet,they are also one of the most poorly understood.Although most of these disorders are polygenic,genotype still plays an important role in th...Neurological disorders are amongst the most widely studied human aliments.Yet,they are also one of the most poorly understood.Although most of these disorders are polygenic,genotype still plays an important role in their etiologies.For example,in schizophrenia and autism spectrum disorders,there is a 40-60%concordance rate in monozygotic twins,with 60-90%heritability(Burmeister et al.,2008).However,the mechanisms by which multiple genes and their genomic variations influence the phenotypes of the disorders remain to be understood. The complexities of the disorders are tur- ther compounded by the individual rarity of the genomic variations and their variable penetrance (Cook and Scherer, 2008). Thus, conventional disease modeling, such as gene knockout in cells or in animals, to attain the desired disease genotype may not be the most suitable platform for tackling most neurological disorders.展开更多
Dear editors, The seminal, discoveries by Jeffrey Connor Hall, Michael Rosbash and Michael Warren Young have earned the Nobel Prize in Physiology and Medicine 2017 for revealing a crucial physiological mechanism expla...Dear editors, The seminal, discoveries by Jeffrey Connor Hall, Michael Rosbash and Michael Warren Young have earned the Nobel Prize in Physiology and Medicine 2017 for revealing a crucial physiological mechanism explaining biological clock, with important implications for human health and diseases. The work explains the interplay between the biological clock, the transcriptional feedback loop, and neuroscience, where they identified genes and proteins that work together both in humans and other animals. This article describes the link between biological clock disruption and consequent neurodegeneration and also highlights the significance of biological clock modulators for possible clinical interventions in neurological disorders.展开更多
This paper aims to examine theories that attempt to explain biochemical changes in the brain as well as the metabolism of individuals who experience symptoms and conditions related to neurological disorders like depre...This paper aims to examine theories that attempt to explain biochemical changes in the brain as well as the metabolism of individuals who experience symptoms and conditions related to neurological disorders like depression. A systematic literature search was performed on NCBI and PubMed. The search included the keywords neurological disorders, monoamine hypothesis, metabolic syndrome, oxytocin receptor, dietary health, and magnesium intake. Twenty-five research articles met the criteria for the literature review of this examination. In particular, this paper will review multiple studies that investigate the monoamine (MAO) hypothesis of depression and metabolic syndrome (MetS) as a risk factor for neurological disorders. While studies that evaluate additional risk factors for neurological disorders, such as autoimmunity and rheumatic diseases, oxytocin receptor (OXTR) DNA methylation in postpartum depression, dietary health in children and their psychological health, and dietary magnesium and cardiovascular disease, will be reviewed as well.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81901098(to TC),82201668(to HL)Fujian Provincial Health Technology Project,No.2021QNA072(to HL)。
文摘The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channelspecific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood–brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
文摘Despite modern medicine’s advancements,age-related neurological diseases like Alzheimer’s disease and Parkinson’s disease remain challenging due to high costs,side effects,and limited accessibility.Ayurveda,a traditional Indian medicine system,offers Kadha tea as a potential herbal option.This review explores Kadha’s components(basil(Ocimum basilicum L.),black pepper(Piper nigrum L.),Cinnamon(Cinnamomum verum J.Presl),ginger(Zingiber officinale Roscoe),and raisin(Vitis vinifera L.))and their interaction with various neurological disorders.Studies suggest Kadha exhibits anti-inflammatory,antioxidant,and antiviral properties,potentially impacting Alzheimer’s disease,Parkinson’s disease,neurotoxicity,neuroinflammation,and brain trauma.By focusing on specific disease mechanisms and Kadha’s intergrade effects,this review aims to elucidate its potential role in managing age-related neurological disorders.
文摘Background: VANGL2 plays a variety of roles in various cellular processes, including tissue morphogenesis, asymmetric cell division, and nervous system development. There is currently a lack of systematic organization in the development and disease of the nervous system. Purpose: To explore the role of VANGL2 in the development of the nervous system and related diseases. Methods: Literature review and analysis of the role of VANGL2 in the development and disease of the nervous system. Results: VANGL2 defects lead to the development of the nervous system through the misconfiguration of various cells, which affects the development of the cochlea, the conduction of neural signals, and the development of nervous system-related diseases such as Alzheimer’s disease, GBM, Bohling-Opitz syndrome, and hydrocephalus. Conclusions: The VANGL2 gene is essential for nervous system development and its deficiency is linked to severe congenital conditions and various disorders, highlighting the need for more research on treatments for related gene defects.
基金supported by Warren Alpert Foundation and Houston Methodist Academic Institute Laboratory Operating Fund(to HLC).
文摘Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein function or structure,understanding their genetic basis is crucial for accurate diagnosis and targeted therapies.To investigate the underlying pathogenesis of these conditions,researchers often use non-mammalian model organisms,such as Drosophila(fruit flies),which is valued for their genetic manipulability,cost-efficiency,and preservation of genes and biological functions across evolutionary time.Genetic tools available in Drosophila,including CRISPR-Cas9,offer a means to manipulate gene expression,allowing for a deep exploration of the genetic underpinnings of rare neurological diseases.Drosophila boasts a versatile genetic toolkit,rapid generation turnover,and ease of large-scale experimentation,making it an invaluable resource for identifying potential drug candidates.Researchers can expose flies carrying disease-associated mutations to various compounds,rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and,ultimately,clinical trials.In this comprehensive review,we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis,pathophysiology,and potential therapeutic implications.We discuss rare diseases associated with both neuron-expressed and glial-expressed genes.Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay,mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay,and mutations in IRF2BPL causing seizures,a neurodevelopmental disorder with regression,loss of speech,and abnormal movements.And we explore mutations in EMC1 related to cerebellar atrophy,visual impairment,psychomotor retardation,and gain-of-function mutations in ACOX1 causing Mitchell syndrome.Loss-of-function mutations in ACOX1 result in ACOX1 deficiency,characterized by very-long-chain fatty acid accumulation and glial degeneration.Notably,this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology,offering a platform for the rapid identification of potential therapeutic interventions.Rare neurological diseases involve a wide range of expression systems,and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia.Furthermore,mutations within the same gene may result in varying functional outcomes,such as complete loss of function,partial loss of function,or gain-of-function mutations.The phenotypes observed in patients can differ significantly,underscoring the complexity of these conditions.In conclusion,Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases.By facilitating the modeling of these conditions,Drosophila contributes to a deeper understanding of their genetic basis,pathophysiology,and potential therapies.This approach accelerates the discovery of promising drug candidates,ultimately benefiting patients affected by these complex and understudied diseases.
文摘Deep transcranial magnetic stimulation(DTMS)is a new non-invasive neuromodulation technique based on repetitive transcranial magnetic stimulation technology.The new H-coil has significant advantages in the treatment and mechanism research of psychiatric and neurological disorders.This is due to its deep stimulation site and wide range of action.This paper reviews the clinical progress of DTMS in psychiatric and neurological disorders such as Parkinson’s disease,Alzheimer’s disease,post-stroke motor dysfunction,aphasia,and other neurological disorders,as well as anxiety,depression,and schizophrenia.
文摘Background and object:The burden of neurological disorders in India is expected to increase due to the rapid demographic and epidemiological transition,with irrational drug use,which is also a global concern.Thus,drug utilization evaluation is designed to ensure appropriate medicine use within the healthcare settings.The aim of the study was to assess the rate and pattern of drug utilization in the management of neurological disorders.Materials and methods:A hospital-based cross-sectional drug utilization evaluation study on neurological drugs was carried out at the Department of Neurology over a span of six months.All legible prescriptions consisting neurological medications irrespective of patient's gender,aged≥18 years were included for the study.The World Health Organization(WHO)core drug use indicators were used to assess the drug prescribing and utilization patterns.Results:A total of 310 prescriptions were reviewed,where male predominance was found to be 56.45%.Out of 310 prescriptions,drugs belonging to 26 neurological classes were prescribed for the management of various neurological disorders.The majority of patients were diagnosed with epilepsy and the most prescribed drugs per patient were phenytoin(14.8%)and valproic acid(6.45%).By following the WHO core drug prescribing indicators,65.47%of drugs prescribed from the India National List of Essential Medicines,2022,followed by 29.83%of drugs prescribed in generic name and 10.86%of prescriptions including injections.Conclusion:The study findings showed that the prescribing pattern in the Department of Neurology was in accordance with the WHO core prescribing indicators.But,the extent of polypharmacy prescriptions was very high.Therefore,interventions are very necessary to promote rational drug prescribing patterns and thus clinical pharmacists can contribute to assess and review the drug utilization pattern to optimize the drug therapy and improvement in patient safety.
文摘The central nervous system(CNS)is a reservoir of immune privilege.Specialized immune glial cells are responsible for maintenance and defense against foreign invaders.The blood–brain barrier(BBB)prevents detrimental pathogens and potentially overreactive immune cells from entering the periphery.When the double-edged neuroinflammatory response is overloaded,it no longer has the protective function of promoting neuroregeneration.Notably,microbiota and its derivatives may emerge as pathogen-associated molecular patterns of brain pathology,causing microbiome–gut–brain axis dysregulation from the bottom-up.When dysbiosis of the gastrointestinal flora leads to subsequent alterations in BBB permeability,peripheral immune cells are recruited to the brain.This results in amplification of neuroinflammatory circuits in the brain,which eventually leads to specific neurological disorders.Aggressive treatment strategies for gastrointestinal disorders may protect against specific immune responses to gastrointestinal disorders,which can lead to potential protective effects in the CNS.Accordingly,this study investigated the mutual effects of microbiota and the gut–brain axis,which may provide targeting strategies for future disease treatment.
文摘Background: Autoimmune diseases, which are among the leading causes of morbidity and mortality in the world, are pathologies caused by a dysfunction of the immune system. They can affect the central nervous system, the peripheral nervous system or both nervous systems. Objectives: To describe the epidemiological, clinical, paraclinical, therapeutic and evolutive aspects of neurological disorders related to autoimmune diseases. Methods: This was a prospective cohort study. It was carried out from 1 January 2015 to 31 December 2019 (5 years). It focused on patients aged 15 years and above, who were hospitalized or followed as ambulatory patients for neurological disorders related to autoimmune diseases in the neurology department of the university teaching hospital in Brazzaville. Results: Among the 41 patients who fulfilled inclusion criteria, there were 29 (70.73%) women and 12 (29.27%) men. The average age of patients was 38.3 ± 13.8 years. An increase in the frequency of neurological disorders related to autoimmune diseases was observed every year. The main neurological disorders were neuromyelitis optica spectrum disorders (n = 14;34.15%), acute polyradiculoneuropathies (n = 13;31.71%), chronic polyradiculoneuropathies (n = 4;9.75%) and acute disseminated encephalomyelitis (n = 3;7.31%). The treatments administered, which consisted of corticosteroids and immunosuppressive drugs, had significantly improved the vital prognosis and functional status of patients (p = 0.025). Conclusion: In our study population, neurological disorders related to autoimmune diseases are rare. The neurological clinico-pathological entities diagnosed are similar to those reported in the literature. The therapeutic approaches used improve the quality of life of patients.
文摘Background: Many children in Nigeria suffer from detrimental, debilitating and lifelong neurologic disorders, many of which are highly preventable using simple, cost-effective interventions. Objective: To examine the pattern of neurological disorders among children presenting at the neurology unit of Chukwuemeka Odumegwu Ojukwu University Teaching Hospital Amaku, Awka, Nigeria. Methods: A retrospective review of the hospital records of children who presented at the Paediatric Neurology Unit between 1st March 2020 and 31st March 2022 was carried out. Data were abstracted using a proforma and analyzed using SPSS Version 21. Results: A total of 138 children aged 0 to 15 years were seen in the unit during the period under review. 115 (83.35%) of these children were diagnosed with chronic neurological disorders. Those with chronic neurological disorders had a male:female ratio of 1.9:1, and the majority (65%) of them were below 5 years of age. The most common presenting complaints were delayed milestones (43.4%), seizures (23.8%), and speech disorders (17.2%). The most typical diagnosis was cerebral palsy (CP) (34.7%), seizure disorder (29.8%) and attention deficit hyperactivity disorder (8.9%). Perinatal asphyxia (47.7%), neonatal jaundice (17.0%) and central nervous system infections (CNS) infections (12.5%) were identified as the major risk factors responsible for these neurologic disorders. Conclusion: Cerebral palsy and seizure disorders constitute the major neurological disorders among children seen in our institution. Efforts should be intensified at reducing the incidence and impact of perinatal asphyxia, neonatal jaundice and CNS infections, identified as the major culprits, to curb the menace of these debilitating lifelong neurologic sequelae.
文摘Extraintestinal manifestations occur in about one-third of patients living with inflammatory bowel disease(IBD) and may precede the onset of gastrointestinal symptoms by many years. Neurologic disorders associated with IBD are not frequent, being reported in 3% of patients, but they often represent an important cause of morbidity and a relevant diagnostic issue. In addition, the increasing use of immunosuppressant and biological therapies for IBD may also play a pivotal role in the development of neurological disorders of different type and pathogenesis. Hence, we provide a complete and profound review of the main features of neurological complications associated with IBD, with particular reference to those related to drugs and with a specific focus on their clinical presentation and possible pathophysiological mechanisms.
文摘Mesenchymal stem cells are multipotent cells that possess anti-inflammatory,antiapoptotic and immunomodulatory properties.The effects of existing drugs for neurodegenerative disorders such as Alzheimer’s disease are limited,thus mesenchymal stem cell therapy has been anticipated as a means of ameliorating neuronal dysfunction.Since mesenchymal stem cells are known to scarcely differentiate into neuronal cells in damaged brain after transplantation,paracrine factors secreted from mesenchymal stem cells have been suggested to exert therapeutic effects.Extracellular vesicles and exosomes are small vesicles released from mesenchymal stem cells that contain various molecules,including proteins,mRNAs and microRNAs.In recent years,administration of exosomes/extracellular vesicles in models of neurological disorders has been shown to improve neuronal dysfunctions,via exosomal transfer into damaged cells.In addition,various microRNAs derived from mesenchymal stem cells that regulate various genes and reduce neuropathological changes in various neurological disorders have been identified.This review summarizes the effects of exosomes/extracellular vesicles and exosomal microRNAs derived from mesenchymal stem cells on models of stroke,subarachnoid and intracerebral hemorrhage,traumatic brain injury,and cognitive impairments,including Alzheimer’s disease.
基金supported by the State Key Program of National Natural Science Foundation of China(31530056)the National First-class Discipline Program of Food Science and Technology(JUFSTR20180102)the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province,China.
文摘It is well known that the gut microbiota plays an extremely important role in modulating host physiological functions such as immunity and metabolic homeostasis.In recent years,accumulated evidence has revealed that the gut microbiota can regulate the functions of the central nervous system(CNS)through the gut-brain axis,which provides a novel insight into the interactions between the gut and brain.This review focuses on the molecular mechanism of the crosstalk between the gut microbiota and the brain via the gut-brain axis,and on the onset and development of neurological disorders triggered by gut microbiota dysbiosis.These topics are followed by a critical analysis of potential intervention strategies targeting gut microbiota dysbiosis,including the use of probiotics,prebiotics,synbiotics,and diets.While research on the microbiota-gut-brain axis is still in its relative infancy,clarifying the molecular mechanism that underlies how the gut microbiota regulates neurological functions not only holds the promise of revealing potentially novel pathogeneses of neurological disorders,but also may lead to the development of potential diagnosis biomarkers and intervention strategies targeting microbiota dysbiosis for neurological disorders.
基金Supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq),Funda o de AmparoàPesquisa do Estado de S o Paulo(FAPESP)and Instituto Nacional de Neurociência Translacional(INNT),Programa de Núcleos de Excelência(PRONEX)(Brazil)
文摘The kallikrein-kinin system(KKS) is an intricate endogenous pathway involved in several physiological and pathological cascades in the brain. Due to the pathological effects of kinins in blood vessels and tissues, their formation and degradation are tightly controlled. Their components have been related to several central nervous system diseases such as stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy and others. Bradykinin and its receptors(B1R and B2R) may have a role in the pathophysiology of certain central nervous system diseases. It has been suggested that kinin B1R is up-regulated in pathological conditions and has a neurodegenerative pattern, while kinin B2R is constitutive and can act as a neuroprotective factor in many neurological conditions. The renin angiotensin system(RAS) is an important blood pressure regulator and controls both sodium and water intake. AngⅡ is a potent vasoconstrictor molecule and angiotensin converting enzyme is the major enzyme responsible for its release. AngⅡ acts mainly on the AT1 receptor, with involvement in several systemic and neurological disorders. Brain RAS has been associated with physiological pathways, but is also associated with brain disorders. This review describes topics relating to the involvement of both systems in several forms of brain dysfunction and indicates components of the KKS and RAS that have been used as targets in several pharmacological approaches.
基金supported by the National Natural Science Foundation of China,No.31471044a grant from the Ministry of Science and Technology of China,No.2015AA020918
文摘Neurologic impairments are usually irreversible as a result of limited regeneration in the central nervous system.Therefore,based on the regenerative capacity of stem cells,transplantation therapies of various stem cells have been tested in basic research and preclinical trials,and some have shown great prospects.This manuscript overviews the cellular and molecular characteristics of embryonic stem cells,induced pluripotent stem cells,neural stem cells,retinal stem/progenitor cells,mesenchymal stem/stromal cells,and their derivatives in vivo and in vitro as sources for regenerative therapy.These cells have all been considered as candidates to treat several major neurological disorders and diseases,owing to their self-renewal capacity,multi-directional differentiation,neurotrophic properties,and immune modulation effects.We also review representative basic research and recent clinical trials using stem cells for neurodegenerative diseases,including Parkinson's disease,Alzheimer's disease,and age-related macular degeneration,as well as traumatic brain injury and glioblastoma.In spite of a few unsuccessful cases,risks of tumorigenicity,and ethical concerns,most results of animal experiments and clinical trials demonstrate efficacious therapeutic effects of stem cells in the treatment of nervous system disease.In summary,these emerging findings in regenerative medicine are likely to contribute to breakthroughs in the treatment of neurological disorders.Thus,stem cells are a promising candidate for the treatment of nervous system diseases.
基金the National Natural Science Foundation of China(Grant No.81102401).
文摘Although therapeutic potential of neurotrophic factors(NTFs)has been well recognized for over two decades,attempts to translate that potential to the clinic have been disappointing,largely due to significant obstacles in delivery,including inadequate protein dose/kinetics released at target sites.Considerable efforts have been made to improve the therapeutic performance of NTFs.This articles reviews recent developments in localized delivery systems of NTFs for the neurological disorders treatments with a main focus on sustained delivery strategies.Different non-covalent binding approaches have been employed to immobilize proteins in hydrogels,microspheres,electrospun nanofibers,and their combined systems,which serve as depots for sustained local release of NTFs.The challenges associated with current NTFs delivery systems and how these systems can be applied to neurological diseases and disorders have been discussed in the review.In conclusion,optimal delivery systems for NTFs will be needed for reliable and meaningful clinical benefits;ideally,delivering a time and dose-controlled release of bioactive multiNTFs at different individual optimal kinetics to achieve multi-functions in target tissues is significant preferred.
文摘Several diseases have been successfully modeled since the development of induced pluripotent stem cell(i PSC) technology in 2006. Since then, methods for increased reprogramming efficiency and cell culture maintenance have been optimized and many protocols for differentiating stem cell lines have been successfully developed, allowing the generation of several cellular subtypes in vitro. Gene editing technologies have also greatly advanced lately, enhancing disease-specific phenotypes by creating isogenic cell lines, allowing mutations to be corrected in affected samples or inserted in control lines. Neurological disorders have benefited the most from i PSC-disease modeling for its capability for generating disease-relevant cell types in vitro from the central nervous system, such as neurons and glial cells, otherwise only available from post-mortem samples. Patient-specific i PSC-derived neural cells can recapitulate the phenotypes of these diseases and therefore, considerably enrich our understanding of pathogenesis, disease mechanism and facilitate the development of drug screening platforms for novel therapeutic targets. Here, we review the accomplishments and the current progress in human neurological disorders by using i PSC modeling for Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal muscular atrophy, amyotrophic lateral sclerosis, duchenne muscular dystrophy, schizophrenia and autism spectrum disorders, which include Timothy syndrome, Fragile X syndrome, Angelman syndrome, Prader-Willi syndrome, PhelanMc Dermid, Rett syndrome as well as Nonsyndromic Autism.
基金supported by Cátedra Marcos Moshinsky (to EM)CONACyT Fronteras de la Ciencia#536 (to EM)+1 种基金VIEP-PIFI-FOMES-PROMEP-BUAP-Puebla (to EM)Comitéde Internacionalización de la Investigación (to EM),México
文摘Random noise stimulation technique involves applying any form of energy(for instance,light,mechanical,electrical,sound)with unpredictable intensities through time to the brain or sensory receptors to enhance sensory,motor,or cognitive functions.Random noise stimulation initially employed mechanical noise in auditory and cutaneous stimuli,but electrical energies applied to the brain or the skin are becoming more frequent,with a series of clinical applications.Indeed,recent evidence shows that transcranial random noise stimulation can increase corticospinal excitability,improve cognitive/motor performance,and produce beneficial aftereffects at the behavioral and psychological levels.Here,we present a narrative review about the potential uses of random noise stimulation to treat neurological disorders,including attention deficit hyperactivity disorder,schizophrenia,amblyopia,myopia,tinnitus,multiple sclerosis,post-stroke,vestibular-postural disorders,and sensitivity loss.Many of the reviewed studies reveal that the optimal way to deliver random noise stimulation-based therapies is with the concomitant use of neurological and neuropsychological assessments to validate the beneficial aftereffects.In addition,we highlight the requirement of more randomized controlled trials and more physiological studies of random noise stimulation to discover another optimal way to perform the random noise stimulation interventions.
文摘Neurological disorders are amongst the most widely studied human aliments.Yet,they are also one of the most poorly understood.Although most of these disorders are polygenic,genotype still plays an important role in their etiologies.For example,in schizophrenia and autism spectrum disorders,there is a 40-60%concordance rate in monozygotic twins,with 60-90%heritability(Burmeister et al.,2008).However,the mechanisms by which multiple genes and their genomic variations influence the phenotypes of the disorders remain to be understood. The complexities of the disorders are tur- ther compounded by the individual rarity of the genomic variations and their variable penetrance (Cook and Scherer, 2008). Thus, conventional disease modeling, such as gene knockout in cells or in animals, to attain the desired disease genotype may not be the most suitable platform for tackling most neurological disorders.
基金financially supported by DST-SERB(PDF/2016/001369)
文摘Dear editors, The seminal, discoveries by Jeffrey Connor Hall, Michael Rosbash and Michael Warren Young have earned the Nobel Prize in Physiology and Medicine 2017 for revealing a crucial physiological mechanism explaining biological clock, with important implications for human health and diseases. The work explains the interplay between the biological clock, the transcriptional feedback loop, and neuroscience, where they identified genes and proteins that work together both in humans and other animals. This article describes the link between biological clock disruption and consequent neurodegeneration and also highlights the significance of biological clock modulators for possible clinical interventions in neurological disorders.
文摘This paper aims to examine theories that attempt to explain biochemical changes in the brain as well as the metabolism of individuals who experience symptoms and conditions related to neurological disorders like depression. A systematic literature search was performed on NCBI and PubMed. The search included the keywords neurological disorders, monoamine hypothesis, metabolic syndrome, oxytocin receptor, dietary health, and magnesium intake. Twenty-five research articles met the criteria for the literature review of this examination. In particular, this paper will review multiple studies that investigate the monoamine (MAO) hypothesis of depression and metabolic syndrome (MetS) as a risk factor for neurological disorders. While studies that evaluate additional risk factors for neurological disorders, such as autoimmunity and rheumatic diseases, oxytocin receptor (OXTR) DNA methylation in postpartum depression, dietary health in children and their psychological health, and dietary magnesium and cardiovascular disease, will be reviewed as well.