期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
miR-181b promotes angiogenesis and neurological function recovery after ischemic stroke 被引量:1
1
作者 Li-Xia Xue Lin-Yuan Shu +6 位作者 Hong-Mei Wang Kai-Li Lu Li-Gang Huang Jing-Yan Xiang Zhi Geng Yu-Wu Zhao Hao Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期1983-1989,共7页
Promotion of new blood vessel formation is a new strategy for treating ischemic stroke.Non-coding miRNAs have been recently considered potential therapeutic targets for ischemic stroke.miR-181b has been shown to promo... Promotion of new blood vessel formation is a new strategy for treating ischemic stroke.Non-coding miRNAs have been recently considered potential therapeutic targets for ischemic stroke.miR-181b has been shown to promote angiogenesis in hypoxia and traumatic brain injury model,while its effect on ischemic stroke remains elusive.In this study,we found that overexpression of miR-181b in brain microvascular endothelial cells subjected to oxygen-glucose deprivation in vitro restored cell prolife ration and enhanced angiogenesis.In rat models of focal cerebral ischemia,ove rexpression of miR-181b reduced infarction volume,promoted angiogenesis in ischemic penumbra,and improved neurological function.We further investigated the molecular mechanism by which miR-181b participates in angiogenesis after ischemic stroke and found that miR-181b directly bound to the 3’-UTR of phosphatase and tensin homolog(PTEN) mRNA to induce PTEN downregulation,leading to activation of the protein kinase B(Akt) pathway,upregulated expression of vascular endothelial growth facto rs,down-regulated expression of endostatin,and promoted angiogenesis.Taken togethe r,these results indicate that exogenous miR-181b exhibits neuroprotective effects on ischemic stro ke through activating the PTEN/Akt signal pathway and promoting angiogenesis. 展开更多
关键词 Akt ANGIOGENESIS ENDOSTATIN ischemic stroke middle cerebral artery occlusion miR-181b neurological function recovery oxygen-glucose deprivation PTEN vascular endothelial growth factor
下载PDF
JNK3 involvement in nerve cell apoptosis and neurofunctional recovery after traumatic brain injury 被引量:4
2
作者 Jiang Long Li Cai +3 位作者 Jintao Li Lei Zhang Haiyang Yang Tinghua Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第16期1491-1499,共9页
Increasing evidence has revealed that the activation of the JNK pathway participates In apoptosis o1 nerve cells and neurological function recovery after traumatic brain injury. However, which genes inI the JNK family... Increasing evidence has revealed that the activation of the JNK pathway participates In apoptosis o1 nerve cells and neurological function recovery after traumatic brain injury. However, which genes inI the JNK family are activated and their role in traumatic brain injury remain unclear. Therefore, in this study, in situ end labeling, reverse transcription-PCR and neurological function assessment were adopted to investigate the alteration of JNK1, JNK2 and JNK3 gene expression in cerebral injured rats, and their role in celt apoptosis and neurological function restoration. Results showed that JNK3 expression significantly decreased at 1 and 6 hours and 1 and 7 days post injury, but that JNK1 and JNK2 expression remained unchanged. In addition, the number of apoptotic nerve cells surrounding the injured cerebral cortex gradually reduced over time post injury. The Neurological Severity Scores gradually decreased over 1,3, 5, 14 and 28 days post injury. These findings suggested that JNK3 expression was downregulated at early stages of brain injury, which may be associated with apoptosis of nerve cells. Downregulation of JNK3 expression may promote the recovery of neurological function following traumatic brain injury. 展开更多
关键词 neural regeneration JNK1 JNK2 JNK3 traumatic brain injury TdT-mediated dUTP nick endlabeling reverse transcription-PCR cell apoptosis neurological function recovery NEUROREGENERATION
下载PDF
Effects of professional rehabilitation training on the recovery of neurological function in young stroke patients 被引量:11
3
作者 Chao-jin-zi Li Xiao-xia Du +7 位作者 Kun Yang Lu-ping Song Peng-kun Li Qiang Wang Rong Sun Xiao-ling Lin Hong-yu Lu Tong Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第11期1766-1772,共7页
Young stroke patients have a strong desire to return to the society, but few studies have been conducted on their rehabilitation training items, intensity, and prognosis. We analyzed clinical data of young and middle-... Young stroke patients have a strong desire to return to the society, but few studies have been conducted on their rehabilitation training items, intensity, and prognosis. We analyzed clinical data of young and middle-aged/older stroke patients hospitalized in the Department of Neurological Rehabilitation, China Rehabilitation Research Center, Capital Medical University, China from February 2014 to May 2015. Results demonstrated that hemorrhagic stroke (59.6%) was the primary stroke type found in the young group, while ischemic stroke (60.0%) was the main type detected in the middle-aged/older group. Compared with older stroke patients, education level and incidence of hyperhomocysteinemia were higher in younger stroke patients, whereas, incidences of hypertension, diabetes, and heart disease were lower. The average length of hospital stay was longer in the young group than in the middle-aged/older group. The main risk factors observed in the young stroke patients were hypertension, drinking, smoking, hyperlipidemia, hyperhomocysteinemia, diabetes, previous history of stroke, and heart disease. The most accepted rehabilitation program consisted of physiotherapy, occupational therapy, speech therapy, acupuncture and moxibustion. Average rehabilitation training time was 2.5 hours/day. Barthel Index and modified Rankin Scale scores were increased at discharge. Six months after discharge, the degree of occupational and economic satisfaction declined, and there were no changes in family life satisfaction. The degrees of other life satisfaction (such as friendship) improved. The degree of disability and functional status improved significantly in young stroke patients after professional rehabilitation, but the number of patients who returned to society within 6 months after stroke was still small. 展开更多
关键词 nerve regeneration young stroke patients risk factors recovery of neurological function prognosis Life Satisfaction Questionnaire Barthel Index modified Rank Scale neural regeneration
下载PDF
Erythropoietin inhibits ferroptosis and ameliorates neurological function after spinal cord injury 被引量:2
4
作者 Yu Kang Rui Zhu +4 位作者 Shuang Li Kun-Peng Qin Hao Tang Wen-Shan Shan Zong-Sheng Yin 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期881-888,共8页
Ferroptosis is one of the critical pathological events in spinal cord injury.Erythropoietin has been reported to improve the recovery of spinal cord injury.However,whether ferroptosis is involved in the neuroprotectiv... Ferroptosis is one of the critical pathological events in spinal cord injury.Erythropoietin has been reported to improve the recovery of spinal cord injury.However,whether ferroptosis is involved in the neuroprotective effects of erythropoietin on spinal cord injury has not been examined.In this study,we established rat models of spinal cord injury by modified Allen’s method and intraperitoneally administered 1000 and 5000 IU/kg erythropoietin once a week for 2 successive weeks.Both low and high doses of erythropoietin promoted recovery of hindlimb function,and the high dose of erythropoietin led to better outcome.High dose of erythropoietin exhibited a stronger suppressive effect on ferroptosis relative to the low dose of erythropoietin.The effects of erythropoietin on inhibiting ferroptosis-related protein expression and restoring mitochondrial morphology were similar to those of Fer-1(a ferroptosis suppressor),and the effects of erythropoietin were largely diminished by RSL3(ferroptosis activator).In vitro experiments showed that erythropoietin inhibited RSL3-induced ferroptosis in PC12 cells and increased the expression of xCT and Gpx4.This suggests that xCT and Gpx4 are involved in the neuroprotective effects of erythropoietin on spinal cord injury.Our findings reveal the underlying anti-ferroptosis role of erythropoietin and provide a potential therapeutic strategy for treating spinal cord injury. 展开更多
关键词 ERYTHROPOIETIN ferroptosis Gpx4 iron overload lipid peroxidation mechanism neurological function recovery spinal cord injury spinal neuron xCT
下载PDF
A three-dimensional matrix system containing melatonin and neural stem cells repairs damage from traumatic brain injury in rats
5
作者 Xuan-Yu Fang Da-Wei Zhao +6 位作者 Chao Zhang Hong-Fei Ge Xu-Yang Zhang Feng-Chun Zhao Yi-Bin Jiang Hua Feng Rong Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第11期2512-2517,共6页
Brain lesions can cause neural stem cells to activate,proliferate,diffe rentiate,and migrate to the injured area.However,after traumatic brain injury,brain tissue defects and microenvironment changes greatly affect th... Brain lesions can cause neural stem cells to activate,proliferate,diffe rentiate,and migrate to the injured area.However,after traumatic brain injury,brain tissue defects and microenvironment changes greatly affect the survival and growth of neural stem cells;the resulting reduction in the number of neural stem cells impedes effective repair of the injured area.Melatonin can promote the survival,proliferation,and differentiation of neural stem cells under adverse conditions such as oxidative stress or hypoxia that can occur after traumatic brain injury.Therefore,we investigated the therapeutic effects of melatonin combined with neural stem cells on traumatic brain injury in rats.First,in vitro studies confirmed that melatonin promoted the survival of neural stem cells deprived of oxygen and glucose.Then,we established a three-dimensional Matrigel-based transplantation system containing melatonin and neural stem cells and then used it to treat traumatic brain injury in rats.We found that treatment with the Matrigel system containing melatonin and neural stem cells decreased brain lesion volume,increased the number of surviving neuro ns,and improved recove ry of neurological function compared with treatment with Matrigel alone,neural stem cells alone,Matrigel and neural stem cells combined,and Matrigel and melatonin combined.Our findings suggest that the three-dimensional Matrigelbased transplantation system containing melatonin and neural stem cells is a potential treatment for traumatic brain injury. 展开更多
关键词 cell therapy magnetic resonance imaging MATRIGEL MELATONIN neural stem cells neurological function recovery three-dimensional transplantation traumatic brain injury
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部