Music therapy,as an ancient and continually evolving therapeutic approach,has demonstrated unique effects and extensive potential applications in the field of rehabilitation medicine.This paper first explores the phys...Music therapy,as an ancient and continually evolving therapeutic approach,has demonstrated unique effects and extensive potential applications in the field of rehabilitation medicine.This paper first explores the physiological and psychological impacts of music and theoretical models of its therapeutic mechanisms.It further details the specific applications of music therapy in neurological rehabilitation,motor function recovery,psychological and emotional adjustment,and chronic disease and pain management.The article also investigates the prospects of integrating music therapy with modern technologies such as virtual reality and artificial intelligence and emphasizes the importance of interdisciplinary collaboration and policy support in advancing this field.Through comprehensive analysis,the paper identifies future development directions and research needs for music therapy in rehabilitation medicine.展开更多
Motor weakness is a common and important sequela of stroke,and motor recovery is mostly achieved within 3 months following stroke(Jorgensen et al.,1995;Fujii and Nakada,2003),suggesting the importance of active reha...Motor weakness is a common and important sequela of stroke,and motor recovery is mostly achieved within 3 months following stroke(Jorgensen et al.,1995;Fujii and Nakada,2003),suggesting the importance of active rehabilitation during the early stage of stroke.Many studies have reported on neurological recovery during this period,however,little is known about pontine infarction(Jang et al.,2007;Kwon and Jang,2012;Kwon展开更多
Objective: This study describes the development and use of a specific database supporting personnel within outpatient neurological rehabilitation to reflect on existing interventions and improve future rehabilitation....Objective: This study describes the development and use of a specific database supporting personnel within outpatient neurological rehabilitation to reflect on existing interventions and improve future rehabilitation. Methods: Five outpatient rehabilitation centres in one county council in Sweden were involved in developing and implementing a systematic data collection template within the existing digital medical record system. Data were collected to get more information on the effects of outpatient stroke rehabilitation in patients who received rehabilitation the first year after a stroke (ICD-I64) and patients who received further rehabilitation 1 year or more after a stroke (ICD-I69). Data analysis included evaluation of balance, movement, activity/participation, health-related quality of life, and self-rated health. Results: The ICD-I64 group had positive results after treatment (p < 0.05) for all variables and the ICD-I69 group had positive results for balance and activity/participation. Conclusions: The use of systematic data collection provided a platform for employees and managers to discuss and use clinical results to improve the type and quality of rehabilitation interventions.展开更多
Prolife ration of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage.Transcranial magnetic stimulation(TMS)has recently emerged as a tool for inducing endogenous ...Prolife ration of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage.Transcranial magnetic stimulation(TMS)has recently emerged as a tool for inducing endogenous neural stem cell regeneration,but its underlying mechanisms remain unclea r In this study,we found that repetitive TMS effectively promotes the proliferation of oxygen-glucose deprived neural stem cells.Additionally,repetitive TMS reduced the volume of cerebral infa rction in a rat model of ischemic stro ke caused by middle cerebral artery occlusion,im p roved rat cognitive function,and promoted the proliferation of neural stem cells in the ischemic penumbra.RNA-sequencing found that repetitive TMS activated the Wnt signaling pathway in the ischemic penumbra of rats with cerebral ischemia.Furthermore,PCR analysis revealed that repetitive TMS promoted AKT phosphorylation,leading to an increase in mRNA levels of cell cycle-related proteins such as Cdk2 and Cdk4.This effect was also associated with activation of the glycogen synthase kinase 3β/β-catenin signaling pathway,which ultimately promotes the prolife ration of neural stem cells.Subsequently,we validated the effect of repetitive TMS on AKT phosphorylation.We found that repetitive TMS promoted Ca2+influx into neural stem cells by activating the P2 calcium channel/calmodulin pathway,thereby promoting AKT phosphorylation and activating the glycogen synthase kinase 3β/β-catenin pathway.These findings indicate that repetitive TMS can promote the proliferation of endogenous neural stem cells through a Ca2+influx-dependent phosphorylated AKT/glycogen synthase kinase 3β/β-catenin signaling pathway.This study has produced pioneering res ults on the intrinsic mechanism of repetitive TMS to promote neural function recove ry after ischemic stro ke.These results provide a stro ng scientific foundation for the clinical application of repetitive TMS.Moreover,repetitive TMS treatment may not only be an efficient and potential approach to support neurogenesis for further therapeutic applications,but also provide an effective platform for the expansion of neural stem cells.展开更多
BACKGROUND The results of existing lower extremity robotics studies are conflicting,and few relevant clinical trials have examined short-term efficacy.In addition,most of the outcome indicators in existing studies are...BACKGROUND The results of existing lower extremity robotics studies are conflicting,and few relevant clinical trials have examined short-term efficacy.In addition,most of the outcome indicators in existing studies are scales,which are not objective enough.We used the combination of objective instrument measurement and scale to explore the short-term efficacy of the lower limb A3 robot,to provide a clinical reference.AIM To investigate the improvement of lower limb walking ability and balance in stroke treated by A3 lower limb robot.METHODS Sixty stroke patients were recruited prospectively in a hospital and randomized into the A3 group and the control group.They received 30 min of A3 robotics training and 30 min of floor walking training in addition to 30 min of regular rehabilitation training.The training was performed five times a week,once a day,for 2 wk.The t-test or non-parametric test was used to compare the threedimensional gait parameters and balance between the two groups before and after treatment.RESULTS The scores of basic activities of daily living,Stroke-Specific Quality of Life Scale,FM balance meter,Fugl-Meyer Assessment scores,Rivermead Mobility Index,Stride speed,Stride length,and Time Up and Go test in the two groups were significantly better than before treatment(19.29±12.15 vs 3.52±4.34;22.57±17.99 vs 4.07±2.51;1.21±0.83 vs 0.18±0.40;3.50±3.80 vs 0.96±2.08;2.07±1.21 vs 0.41±0.57;0.89±0.63 vs 0.11±0.32;12.38±9.00 vs 2.80±3.43;18.84±11.24 vs 3.80±10.83;45.12±69.41 vs 8.41±10.20;29.45±16.62 vs 8.68±10.74;P<0.05).All outcome indicators were significantly better in the A3 group than in the control group,except the area of the balance parameter.CONCLUSION For the short-term treatment of patients with subacute stroke,the addition of A3 robotic walking training to conventional physiotherapy appears to be more effective than the addition of ground-based walking training.展开更多
Tongguan Liqiao acupuncture therapy has been shown to effectively treat dysphagia after stroke-based pseudobulbar paralysis. We presumed that this therapy would be effective for dysphagia after bulbar paralysis in pat...Tongguan Liqiao acupuncture therapy has been shown to effectively treat dysphagia after stroke-based pseudobulbar paralysis. We presumed that this therapy would be effective for dysphagia after bulbar paralysis in patients with brainstem infarction. Sixty-four patients with dysphagia following brainstem infarction were recruited and divided into a medulla oblongata infarction group(n = 22), a midbrain and pons infarction group(n = 16), and a multiple cerebral infarction group(n = 26) according to their magnetic resonance imaging results. All patients received Tongguan Liqiao acupuncture for 28 days. The main acupoints were Neiguan(PC6), Renzhong(DU26), Sanyinjiao(SP6), Fengchi(GB20), Wangu(GB12), and Yifeng(SJ17). Furthermore, the posterior pharyngeal wall was pricked. Before and after treatment, patient swallowing functions were evaluated with the Kubota Water Test, Fujishima Ichiro Rating Scale, and the Standard Swallowing Assessment. The Barthel Index was also used to evaluate their quality of life. Results showed that after 28 days of treatment, scores on the Kubota Water Test and Standard Swallowing Assessment had decreased, but scores on the Fujishima Ichiro Rating Scale and Barthel Index had increased in each group. The total efficacy rate was 92.2% after treatment, and was most obvious in patients with medulla oblongata infarction(95.9%). These findings suggest that Tongguan Liqiao acupuncture therapy can repair the connection of upper motor neurons to the medulla oblongata motor nucleus, promote the recovery of brainstem infarction, and improve patient's swallowing ability and quality of life.展开更多
The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patient...The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains un- clear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The FugI-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sen- sorimotor cortex.展开更多
Transferring the contralateral C7 nerve root to the median or radial nerve has become an important means of repairing brachial plexus nerve injury.However,outcomes have been disappointing.Electroencephalography(EEG)-b...Transferring the contralateral C7 nerve root to the median or radial nerve has become an important means of repairing brachial plexus nerve injury.However,outcomes have been disappointing.Electroencephalography(EEG)-based human-machine interfaces have achieved promising results in promoting neurological recovery by controlling a distal exoskeleton to perform functional limb exercises early after nerve injury,which maintains target muscle activity and promotes the neurological rehabilitation effect.This review summarizes the progress of research in EEG-based human-machine interface combined with contralateral C7 transfer repair of brachial plexus nerve injury.Nerve transfer may result in loss of nerve function in the donor area,so only nerves with minimal impact on the donor area,such as the C7 nerve,should be selected as the donor.Single tendon transfer does not fully restore optimal joint function,so multiple functions often need to be reestablished simultaneously.Compared with traditional manual rehabilitation,EEG-based human-machine interfaces have the potential to maximize patient initiative and promote nerve regeneration and cortical remodeling,which facilitates neurological recovery.In the early stages of brachial plexus injury treatment,the use of an EEG-based human-machine interface combined with contralateral C7 transfer can facilitate postoperative neurological recovery by making full use of the brain’s computational capabilities and actively controlling functional exercise with the aid of external machinery.It can also prevent disuse atrophy of muscles and target organs and maintain neuromuscular junction effectiveness.Promoting cortical remodeling is also particularly important for neurological recovery after contralateral C7 transfer.Future studies are needed to investigate the mechanism by which early movement delays neuromuscular junction damage and promotes cortical remodeling.Understanding this mechanism should help guide the development of neurological rehabilitation strategies for patients with brachial plexus injury.展开更多
Traumatic brain injury(TBI)is a common disability-causing neurological disorder.For successful rehabilitation of TBI patients,a thorough evaluation of the presence and extent of neural injury is essential for determ...Traumatic brain injury(TBI)is a common disability-causing neurological disorder.For successful rehabilitation of TBI patients,a thorough evaluation of the presence and extent of neural injury is essential for determining the optimal rehabilitation strategy and accurate prognosis.However,it is difficult to determine the status of neural tracts.展开更多
Objectives The purpose of this systematic review and meta-analysis is to evaluate the long-term efficacy of Extracorporeal Shock Wave Therapy (ESWT) on reducing lower limb post-stroke spasticity in adults.Methods A sy...Objectives The purpose of this systematic review and meta-analysis is to evaluate the long-term efficacy of Extracorporeal Shock Wave Therapy (ESWT) on reducing lower limb post-stroke spasticity in adults.Methods A systematic electronic search of PubMed/ MEDLINE, Physiotherapy Evidence Database (PEDro), Scopus, Ovid MEDLINE(R), and search engine of Google Scholar was performed. Publications that ranged from January 2010 to August 2020, published in English, French, Spanish, Portuguese, and Italian language and available as full texts were eligible for inclusion and they were searched without any restrictions of country. The study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and followed the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions. Two authors screened the references, extracted data, and assessed the risk of bias. The primary outcome was spasticity grade mainly assessed by the Modified Ashworth Scale (MAS). Secondary outcomes were passive range of motion (PROM), pain intensity, electrophysiological parameters, gait assessment, and adverse events.Results A total of seven recent randomized controlled trials (RCTs) were included in the systematic review and meta-analysis, and a beneficial effect on spasticity was found. The high level of evidence presented in this paper showed that ESWT ameliorates spasticity considering the parameters: MAS: standardized mean difference (SMD)=0.53;95% confidence interval (95% CI): (0.07-0.99);Modified Tardieu Scale (MTS): SMD=0.56;95% CI: (0.01-1.12);Visual Analogue Scale (VAS): SMD=0.35;95% CI: (-0.21-0.91);PROM: SMD=0.69;95% CI: (0.20-1.19).Conclusions ESWT presented long-term efficacy on lower limb post-stroke spasticity, reduced pain intensity, and increased range of motion. The effect of this novel and non-invasive therapy was significant and the intervention did not present adverse events, proving a satisfactory safety profile.展开更多
文摘Music therapy,as an ancient and continually evolving therapeutic approach,has demonstrated unique effects and extensive potential applications in the field of rehabilitation medicine.This paper first explores the physiological and psychological impacts of music and theoretical models of its therapeutic mechanisms.It further details the specific applications of music therapy in neurological rehabilitation,motor function recovery,psychological and emotional adjustment,and chronic disease and pain management.The article also investigates the prospects of integrating music therapy with modern technologies such as virtual reality and artificial intelligence and emphasizes the importance of interdisciplinary collaboration and policy support in advancing this field.Through comprehensive analysis,the paper identifies future development directions and research needs for music therapy in rehabilitation medicine.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIP)(NRF-2015R1A2A2A01004073)
文摘Motor weakness is a common and important sequela of stroke,and motor recovery is mostly achieved within 3 months following stroke(Jorgensen et al.,1995;Fujii and Nakada,2003),suggesting the importance of active rehabilitation during the early stage of stroke.Many studies have reported on neurological recovery during this period,however,little is known about pontine infarction(Jang et al.,2007;Kwon and Jang,2012;Kwon
文摘Objective: This study describes the development and use of a specific database supporting personnel within outpatient neurological rehabilitation to reflect on existing interventions and improve future rehabilitation. Methods: Five outpatient rehabilitation centres in one county council in Sweden were involved in developing and implementing a systematic data collection template within the existing digital medical record system. Data were collected to get more information on the effects of outpatient stroke rehabilitation in patients who received rehabilitation the first year after a stroke (ICD-I64) and patients who received further rehabilitation 1 year or more after a stroke (ICD-I69). Data analysis included evaluation of balance, movement, activity/participation, health-related quality of life, and self-rated health. Results: The ICD-I64 group had positive results after treatment (p < 0.05) for all variables and the ICD-I69 group had positive results for balance and activity/participation. Conclusions: The use of systematic data collection provided a platform for employees and managers to discuss and use clinical results to improve the type and quality of rehabilitation interventions.
基金supported by the National Natural Science Foundation of China,Nos.81672261(to XH),81972151(to HZ),82372568(to JL)the Natural Science Foundation of Guangdong Province,Nos.2019A1515011106(to HZ),2023A1515030080(to JL)。
文摘Prolife ration of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage.Transcranial magnetic stimulation(TMS)has recently emerged as a tool for inducing endogenous neural stem cell regeneration,but its underlying mechanisms remain unclea r In this study,we found that repetitive TMS effectively promotes the proliferation of oxygen-glucose deprived neural stem cells.Additionally,repetitive TMS reduced the volume of cerebral infa rction in a rat model of ischemic stro ke caused by middle cerebral artery occlusion,im p roved rat cognitive function,and promoted the proliferation of neural stem cells in the ischemic penumbra.RNA-sequencing found that repetitive TMS activated the Wnt signaling pathway in the ischemic penumbra of rats with cerebral ischemia.Furthermore,PCR analysis revealed that repetitive TMS promoted AKT phosphorylation,leading to an increase in mRNA levels of cell cycle-related proteins such as Cdk2 and Cdk4.This effect was also associated with activation of the glycogen synthase kinase 3β/β-catenin signaling pathway,which ultimately promotes the prolife ration of neural stem cells.Subsequently,we validated the effect of repetitive TMS on AKT phosphorylation.We found that repetitive TMS promoted Ca2+influx into neural stem cells by activating the P2 calcium channel/calmodulin pathway,thereby promoting AKT phosphorylation and activating the glycogen synthase kinase 3β/β-catenin pathway.These findings indicate that repetitive TMS can promote the proliferation of endogenous neural stem cells through a Ca2+influx-dependent phosphorylated AKT/glycogen synthase kinase 3β/β-catenin signaling pathway.This study has produced pioneering res ults on the intrinsic mechanism of repetitive TMS to promote neural function recove ry after ischemic stro ke.These results provide a stro ng scientific foundation for the clinical application of repetitive TMS.Moreover,repetitive TMS treatment may not only be an efficient and potential approach to support neurogenesis for further therapeutic applications,but also provide an effective platform for the expansion of neural stem cells.
基金Shaoguan Municipal Health Bureau,No.Y22058Shaoguan City Science and Technology Plan Project,No.220517164531600+1 种基金The clinical trial was approved by the Ethics Committee of the Yuebei People's Hospital(No.KY-2021-327)The program was registered online in the Chinese Clinical Trial Registry(Registration No.ChiCTR2100052767)。
文摘BACKGROUND The results of existing lower extremity robotics studies are conflicting,and few relevant clinical trials have examined short-term efficacy.In addition,most of the outcome indicators in existing studies are scales,which are not objective enough.We used the combination of objective instrument measurement and scale to explore the short-term efficacy of the lower limb A3 robot,to provide a clinical reference.AIM To investigate the improvement of lower limb walking ability and balance in stroke treated by A3 lower limb robot.METHODS Sixty stroke patients were recruited prospectively in a hospital and randomized into the A3 group and the control group.They received 30 min of A3 robotics training and 30 min of floor walking training in addition to 30 min of regular rehabilitation training.The training was performed five times a week,once a day,for 2 wk.The t-test or non-parametric test was used to compare the threedimensional gait parameters and balance between the two groups before and after treatment.RESULTS The scores of basic activities of daily living,Stroke-Specific Quality of Life Scale,FM balance meter,Fugl-Meyer Assessment scores,Rivermead Mobility Index,Stride speed,Stride length,and Time Up and Go test in the two groups were significantly better than before treatment(19.29±12.15 vs 3.52±4.34;22.57±17.99 vs 4.07±2.51;1.21±0.83 vs 0.18±0.40;3.50±3.80 vs 0.96±2.08;2.07±1.21 vs 0.41±0.57;0.89±0.63 vs 0.11±0.32;12.38±9.00 vs 2.80±3.43;18.84±11.24 vs 3.80±10.83;45.12±69.41 vs 8.41±10.20;29.45±16.62 vs 8.68±10.74;P<0.05).All outcome indicators were significantly better in the A3 group than in the control group,except the area of the balance parameter.CONCLUSION For the short-term treatment of patients with subacute stroke,the addition of A3 robotic walking training to conventional physiotherapy appears to be more effective than the addition of ground-based walking training.
基金supported by a grant from the Construction of Traditional Chinese Medicine Prevention and Treatment of Apoplexy Comprehensive System,No.201007002
文摘Tongguan Liqiao acupuncture therapy has been shown to effectively treat dysphagia after stroke-based pseudobulbar paralysis. We presumed that this therapy would be effective for dysphagia after bulbar paralysis in patients with brainstem infarction. Sixty-four patients with dysphagia following brainstem infarction were recruited and divided into a medulla oblongata infarction group(n = 22), a midbrain and pons infarction group(n = 16), and a multiple cerebral infarction group(n = 26) according to their magnetic resonance imaging results. All patients received Tongguan Liqiao acupuncture for 28 days. The main acupoints were Neiguan(PC6), Renzhong(DU26), Sanyinjiao(SP6), Fengchi(GB20), Wangu(GB12), and Yifeng(SJ17). Furthermore, the posterior pharyngeal wall was pricked. Before and after treatment, patient swallowing functions were evaluated with the Kubota Water Test, Fujishima Ichiro Rating Scale, and the Standard Swallowing Assessment. The Barthel Index was also used to evaluate their quality of life. Results showed that after 28 days of treatment, scores on the Kubota Water Test and Standard Swallowing Assessment had decreased, but scores on the Fujishima Ichiro Rating Scale and Barthel Index had increased in each group. The total efficacy rate was 92.2% after treatment, and was most obvious in patients with medulla oblongata infarction(95.9%). These findings suggest that Tongguan Liqiao acupuncture therapy can repair the connection of upper motor neurons to the medulla oblongata motor nucleus, promote the recovery of brainstem infarction, and improve patient's swallowing ability and quality of life.
基金supported by the National Natural Science Foundationof China,No.30973165
文摘The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains un- clear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The FugI-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sen- sorimotor cortex.
基金supported by the National Natural Science Foundation of China, No.31771322(to PXZ)the Natural Science Foundation of Beijing, No.7212121(to PXZ)+2 种基金Shenzhen Science and Technology Plan Project, No.JCYJ20190806162205278(to PXZ)Funds for Severe Trauma Standardized Treatment, No.SZSM202011001(to PXZ)a grant from National Center for Trauma Medicine, Beijing, China, No.BMU2020 XY005-01(to PXZ)
文摘Transferring the contralateral C7 nerve root to the median or radial nerve has become an important means of repairing brachial plexus nerve injury.However,outcomes have been disappointing.Electroencephalography(EEG)-based human-machine interfaces have achieved promising results in promoting neurological recovery by controlling a distal exoskeleton to perform functional limb exercises early after nerve injury,which maintains target muscle activity and promotes the neurological rehabilitation effect.This review summarizes the progress of research in EEG-based human-machine interface combined with contralateral C7 transfer repair of brachial plexus nerve injury.Nerve transfer may result in loss of nerve function in the donor area,so only nerves with minimal impact on the donor area,such as the C7 nerve,should be selected as the donor.Single tendon transfer does not fully restore optimal joint function,so multiple functions often need to be reestablished simultaneously.Compared with traditional manual rehabilitation,EEG-based human-machine interfaces have the potential to maximize patient initiative and promote nerve regeneration and cortical remodeling,which facilitates neurological recovery.In the early stages of brachial plexus injury treatment,the use of an EEG-based human-machine interface combined with contralateral C7 transfer can facilitate postoperative neurological recovery by making full use of the brain’s computational capabilities and actively controlling functional exercise with the aid of external machinery.It can also prevent disuse atrophy of muscles and target organs and maintain neuromuscular junction effectiveness.Promoting cortical remodeling is also particularly important for neurological recovery after contralateral C7 transfer.Future studies are needed to investigate the mechanism by which early movement delays neuromuscular junction damage and promotes cortical remodeling.Understanding this mechanism should help guide the development of neurological rehabilitation strategies for patients with brachial plexus injury.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,No.2015R1D1A4A01020385
文摘Traumatic brain injury(TBI)is a common disability-causing neurological disorder.For successful rehabilitation of TBI patients,a thorough evaluation of the presence and extent of neural injury is essential for determining the optimal rehabilitation strategy and accurate prognosis.However,it is difficult to determine the status of neural tracts.
文摘Objectives The purpose of this systematic review and meta-analysis is to evaluate the long-term efficacy of Extracorporeal Shock Wave Therapy (ESWT) on reducing lower limb post-stroke spasticity in adults.Methods A systematic electronic search of PubMed/ MEDLINE, Physiotherapy Evidence Database (PEDro), Scopus, Ovid MEDLINE(R), and search engine of Google Scholar was performed. Publications that ranged from January 2010 to August 2020, published in English, French, Spanish, Portuguese, and Italian language and available as full texts were eligible for inclusion and they were searched without any restrictions of country. The study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and followed the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions. Two authors screened the references, extracted data, and assessed the risk of bias. The primary outcome was spasticity grade mainly assessed by the Modified Ashworth Scale (MAS). Secondary outcomes were passive range of motion (PROM), pain intensity, electrophysiological parameters, gait assessment, and adverse events.Results A total of seven recent randomized controlled trials (RCTs) were included in the systematic review and meta-analysis, and a beneficial effect on spasticity was found. The high level of evidence presented in this paper showed that ESWT ameliorates spasticity considering the parameters: MAS: standardized mean difference (SMD)=0.53;95% confidence interval (95% CI): (0.07-0.99);Modified Tardieu Scale (MTS): SMD=0.56;95% CI: (0.01-1.12);Visual Analogue Scale (VAS): SMD=0.35;95% CI: (-0.21-0.91);PROM: SMD=0.69;95% CI: (0.20-1.19).Conclusions ESWT presented long-term efficacy on lower limb post-stroke spasticity, reduced pain intensity, and increased range of motion. The effect of this novel and non-invasive therapy was significant and the intervention did not present adverse events, proving a satisfactory safety profile.