It is an effective method to broadcast the augmentation information of satellite navigation system using GEO technology.However,it becomes difficult to receive GEO signal in some special situation,for example in citie...It is an effective method to broadcast the augmentation information of satellite navigation system using GEO technology.However,it becomes difficult to receive GEO signal in some special situation,for example in cities or canyons,in which the signal will be sheltered by big buildings or mountains.In order to solve this problem,an Internet-based broadcast network has been proposed to utilize the infrastructure of the Internet to broadcast the augmentation information of satellite navigation system,which is based on application-layer multicast protocols.In this paper,a topology and position aware overlay network construction protocol is proposed to build the network for augmentation information of satellite navigation system.Simulation results show that the new algorithm is able to achieve better performance in terms of delay,depth and degree utilization.展开更多
This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volu...This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures.展开更多
基金supported by National High Technical Research and Development Program of China (863 Program) under Grant No. 2009AA12Z322
文摘It is an effective method to broadcast the augmentation information of satellite navigation system using GEO technology.However,it becomes difficult to receive GEO signal in some special situation,for example in cities or canyons,in which the signal will be sheltered by big buildings or mountains.In order to solve this problem,an Internet-based broadcast network has been proposed to utilize the infrastructure of the Internet to broadcast the augmentation information of satellite navigation system,which is based on application-layer multicast protocols.In this paper,a topology and position aware overlay network construction protocol is proposed to build the network for augmentation information of satellite navigation system.Simulation results show that the new algorithm is able to achieve better performance in terms of delay,depth and degree utilization.
基金This study is financially supported by StateKey Laboratory of Alternate Electrical Power System with Renewable Energy Sources(Grant No.LAPS22012).
文摘This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures.