We present a novel in vitro model in which to investigate the efficacy of experimental drugs for the promotion of axon regeneration in the central nervous system. We co-cultured rat hippocampal neurons and cerebral co...We present a novel in vitro model in which to investigate the efficacy of experimental drugs for the promotion of axon regeneration in the central nervous system. We co-cultured rat hippocampal neurons and cerebral cortical oligodendrocytes, and tested the co-culture system using a Nogo-66 receptor antagonist peptide(NEP1–40), which promotes axonal growth. Primary cultured oligodendrocytes suppressed axonal growth in the rat hippocampus, but NEP1–40 stimulated axonal growth in the co-culture system. Our results confirm the validity of the neuron-oligodendrocyte co-culture system as an assay for the evaluation of drugs for axon regeneration in the central nervous system.展开更多
Objective To study the apoptotic effects of 1 methyl 4 phenyl 1,2,3,6 tetrahydropyridine (MPTP) on the nigral dopaminergic neurons of mice and 1 methyl 4 phenylpyridium ion (MPP +) on pheochromocytoma (P...Objective To study the apoptotic effects of 1 methyl 4 phenyl 1,2,3,6 tetrahydropyridine (MPTP) on the nigral dopaminergic neurons of mice and 1 methyl 4 phenylpyridium ion (MPP +) on pheochromocytoma (PC12) cells, as well as the antagonism of Eldepryl against MPTP's apoptotic effect Methods Three groups of C 57 BL mice were treated with MPTP, Eldepryl plus MPTP and normal saline, respectively, for 7 days before performing TUNEL (terminal deoxyneucleotidyl transferase mediated dUTP x nick end labeling) and FACS (fluorescence activated cell sorting) analyses of neuronal apoptosis in the substantia nigra The same tests were employed in cell culture to examine apoptosis in PC12 cells treated with MPP +, MPTP or PBS Results Intraperitoneal administration of MPTP 30?mg/kg could induce nigral apoptosis, and oral use of Eldepryl prior to MPTP treatment could completely prevent the nigral apoptosis caused by MPTP MPP +, an intermediate metabolite of MPTP, could lead to the apoptosis of PC12 cells, whereas MPTP itself had no such effect on PC12 cells Conclusions The experiment indicated that the neurotoxin, MPTP, might cause the death of nigral neurons through a mechanism of apoptosis and this effect might be mediated by its bioactive intermediate metabolite MPP + Eldepryl could protect the neurotoxicity from MPTP展开更多
基金supported by the Youth Program of the National Natural Science Foundation of China,No.11102235the Key Science and Technology Support Project of Tianjin City of China,No.14ZCZDGX00500+3 种基金the Key Program of the Natural Science Foundation of Tianjin City of China,No.12JCZDJC24100the Science and Technology Foundation of Health Bureau of Tianjin City of China,No.2013KZ134,2014KZ135the Youth Program of the Natural Science Foundation of Tianjin City of China,No.12JCQNJC07100the Seed Foundation of Affiliated Hospital of Logistics University of Chinese People’s Armed Police Force,No.FYM201432
文摘We present a novel in vitro model in which to investigate the efficacy of experimental drugs for the promotion of axon regeneration in the central nervous system. We co-cultured rat hippocampal neurons and cerebral cortical oligodendrocytes, and tested the co-culture system using a Nogo-66 receptor antagonist peptide(NEP1–40), which promotes axonal growth. Primary cultured oligodendrocytes suppressed axonal growth in the rat hippocampus, but NEP1–40 stimulated axonal growth in the co-culture system. Our results confirm the validity of the neuron-oligodendrocyte co-culture system as an assay for the evaluation of drugs for axon regeneration in the central nervous system.
文摘Objective To study the apoptotic effects of 1 methyl 4 phenyl 1,2,3,6 tetrahydropyridine (MPTP) on the nigral dopaminergic neurons of mice and 1 methyl 4 phenylpyridium ion (MPP +) on pheochromocytoma (PC12) cells, as well as the antagonism of Eldepryl against MPTP's apoptotic effect Methods Three groups of C 57 BL mice were treated with MPTP, Eldepryl plus MPTP and normal saline, respectively, for 7 days before performing TUNEL (terminal deoxyneucleotidyl transferase mediated dUTP x nick end labeling) and FACS (fluorescence activated cell sorting) analyses of neuronal apoptosis in the substantia nigra The same tests were employed in cell culture to examine apoptosis in PC12 cells treated with MPP +, MPTP or PBS Results Intraperitoneal administration of MPTP 30?mg/kg could induce nigral apoptosis, and oral use of Eldepryl prior to MPTP treatment could completely prevent the nigral apoptosis caused by MPTP MPP +, an intermediate metabolite of MPTP, could lead to the apoptosis of PC12 cells, whereas MPTP itself had no such effect on PC12 cells Conclusions The experiment indicated that the neurotoxin, MPTP, might cause the death of nigral neurons through a mechanism of apoptosis and this effect might be mediated by its bioactive intermediate metabolite MPP + Eldepryl could protect the neurotoxicity from MPTP