We discover a phenomenon of inhibition effect induced by fractional Gaussian noise in a neuronal system. Firstly,essential properties of fractional Brownian motion(fBm) and generation of fractional Gaussian noise(fGn)...We discover a phenomenon of inhibition effect induced by fractional Gaussian noise in a neuronal system. Firstly,essential properties of fractional Brownian motion(fBm) and generation of fractional Gaussian noise(fGn) are presented,and representative sample paths of fBm and corresponding spectral density of fGn are discussed at different Hurst indexes.Next, we consider the effect of fGn on neuronal firing, and observe that neuronal firing decreases first and then increases with increasing noise intensity and Hurst index of fGn by studying the time series evolution. To further quantify the inhibitory effect of fGn, by introducing the average discharge rate, we investigate the effects of noise and external current on neuronal firing, and find the occurrence of inhibitory effect about noise intensity and Hurst index of f Gn at a certain level of current. Moreover, the inhibition effect is not easy to occur when the noise intensity and Hurst index are too large or too small. In view of opposite action mechanism compared with stochastic resonance, this suppression phenomenon is called inverse stochastic resonance(ISR). Finally, the inhibitory effect induced by fGn is further verified based on the inter-spike intervals(ISIs) in the neuronal system. Our work lays a solid foundation for future study of non-Gaussian-type noise on neuronal systems.展开更多
Changes in the concentration of charged ions in neurons can generate induced electric fields,which can further modulate cell membrane potential.In this paper,Fourier coefficients are used to investigate the effect of ...Changes in the concentration of charged ions in neurons can generate induced electric fields,which can further modulate cell membrane potential.In this paper,Fourier coefficients are used to investigate the effect of electric field on vibrational resonance for signal detection in a single neuron model and a bidirectionally coupled neuron model,respectively.The study found that the internal electric field weakens vibrational resonance by changing two factors,membrane potential and phase-locked mode,while the periodic external electric field of an appropriate frequency significantly enhances the vibrational resonance,suggesting that the external electric field may play a constructive role in the detection of weak signals in the brain and neuronal systems.Furthermore,when the coupling of two neurons is considered,the effect of the electric field on the vibrational resonance is similar to that of a single neuron.The paper also illustrates the effect of electric field coupling on vibrational resonance.This study may provide a new theoretical basis for understanding information encoding and transmission in neurons.展开更多
With the help of a magnetic flux variable, the effects of stochastic electromagnetic disturbances on autapse Hodgkin–Huxley neuronal systems are studied systematically. Firstly, owing to the autaptic function, the in...With the help of a magnetic flux variable, the effects of stochastic electromagnetic disturbances on autapse Hodgkin–Huxley neuronal systems are studied systematically. Firstly, owing to the autaptic function, the inter-spike interval series of an autapse neuron not only bifurcates, but also presents a quasi-periodic characteristic. Secondly, an irregular mixed-mode oscillation induced by a specific electromagnetic disturbance is analyzed using the coefficient of variation of inter-spike intervals. It is shown that the neuronal discharge activity has certain selectivity to the noise intensity, and the appropriate noise intensity can induce the significant mixed-mode oscillations. Finally, the modulation effects of electromagnetic disturbances on a ring field-coupled neuronal network with autaptic structures are explored quantitatively using the average spiking frequency and the average coefficient of variation. The electromagnetic disturbances can not only destroy the continuous and synchronous discharge state, but also induce the resting neurons to generate the intermittent discharge mode and realize the transmission of neural signals in the neuronal network. The studies can provide some theoretical guidance for applying electromagnetic disturbances to effectively control the propagation of neural signals and treat mental illness.展开更多
Traumatic brain injury results in neuronal loss and glial scar formation.Replenishing neurons and eliminating the consequences of glial scar formation are essential for treating traumatic brain injury.Neuronal reprogr...Traumatic brain injury results in neuronal loss and glial scar formation.Replenishing neurons and eliminating the consequences of glial scar formation are essential for treating traumatic brain injury.Neuronal reprogramming is a promising strategy to convert glial scars to neural tissue.However,previous studies have reported inconsistent results.In this study,an AAV9P1 vector incorporating an astrocyte-targeting P1 peptide and glial fibrillary acidic protein promoter was used to achieve dual-targeting of astrocytes and the glial scar while minimizing off-target effects.The results demonstrate that AAV9P1 provides high selectivity of astrocytes and reactive astrocytes.Moreover,neuronal reprogramming was induced by downregulating the polypyrimidine tract-binding protein 1 gene via systemic administration of AAV9P1 in a mouse model of traumatic brain injury.In summary,this approach provides an improved gene delivery vehicle to study neuronal programming and evidence of its applications for traumatic brain injury.展开更多
Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches.A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells ...Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches.A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells towards the neuronal state is achieved due to sophisticated mechanisms of epigenetic,transcriptional,and post-transcriptional regulation.Understanding these neurogenic mechanisms is of major importance,not only for shedding light on very complex and crucial developmental processes,but also for the identification of putative reprogramming factors,that harbor hierarchically central regulatory roles in the course of neurogenesis and bare thus the capacity to drive direct reprogramming towards the neuronal fate.The major transcriptional programs that orchestrate the neurogenic process have been the focus of research for many years and key neurogenic transcription factors,as well as repressor complexes,have been identified and employed in direct reprogramming protocols to convert non-neuronal cells,into functional neurons.The post-transcriptional regulation of gene expression during nervous system development has emerged as another important and intricate regulatory layer,strongly contributing to the complexity of the mechanisms controlling neurogenesis and neuronal function.In particular,recent advances are highlighting the importance of specific RNA binding proteins that control major steps of mRNA life cycle during neurogenesis,such as alternative splicing,polyadenylation,stability,and translation.Apart from the RNA binding proteins,microRNAs,a class of small non-coding RNAs that block the translation of their target mRNAs,have also been shown to play crucial roles in all the stages of the neurogenic process,from neural stem/progenitor cell proliferation,neuronal differentiation and migration,to functional maturation.Here,we provide an overview of the most prominent post-transcriptional mechanisms mediated by RNA binding proteins and microRNAs during the neurogenic process,giving particular emphasis on the interplay of specific RNA binding proteins with neurogenic microRNAs.Taking under consideration that the molecular mechanisms of neurogenesis exert high similarity to the ones driving direct neuronal reprogramming,we also discuss the current advances in in vitro and in vivo direct neuronal reprogramming approaches that have employed microRNAs or RNA binding proteins as reprogramming factors,highlighting the so far known mechanisms of their reprogramming action.展开更多
Neuronal injury,aging,and cerebrovascular and neurodegenerative diseases such as cerebral infarction,Alzheimer’s disease,Parkinson’s disease,frontotemporal dementia,amyotrophic lateral sclerosis,and Huntington’s di...Neuronal injury,aging,and cerebrovascular and neurodegenerative diseases such as cerebral infarction,Alzheimer’s disease,Parkinson’s disease,frontotemporal dementia,amyotrophic lateral sclerosis,and Huntington’s disease are characte rized by significant neuronal loss.Unfo rtunately,the neurons of most mammals including humans do not possess the ability to self-regenerate.Replenishment of lost neurons becomes an appealing therapeutic strategy to reve rse the disease phenotype.Transplantation of pluripotent neural stem cells can supplement the missing neurons in the brain,but it carries the risk of causing gene mutation,tumorigenesis,severe inflammation,and obstructive hydrocephalus induced by brain edema.Conversion of neural or non-neural lineage cells into functional neurons is a promising strategy for the diseases involving neuron loss,which may overcome the above-mentioned disadvantages of neural stem cell therapy.Thus far,many strategies to transfo rm astrocytes,fibroblasts,microglia,Muller glia,NG2 cells,and other glial cells to mature and functional neurons,or for the conversion between neuronal subtypes have been developed thro ugh the regulation of transcription factors,polypyrimidine tra ct binding protein 1(PTBP1),and small chemical molecules or are based on a combination of several factors and the location in the central nervous system.However,some recent papers did not obtain expected results,and discrepancies exist.Therefore,in this review,we discuss the history of neuronal transdifferentiation,summarize the strategies for neuronal replenishment and conversion from glia,especially astrocytes,and point out that biosafety,new strategies,and the accurate origin of the truly co nverted neurons in vivo should be focused upon in future studies.It also arises the attention of replenishing the lost neurons from glia by gene therapies such as up-regulation of some transc ription factors or downregulation of PTBP1 or drug interfe rence therapies.展开更多
Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury(SCI).However,this subject has been neglected in part because appropriate tools are ...Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury(SCI).However,this subject has been neglected in part because appropriate tools are lacking.Emerging in vivo imaging and labeling methods offer great potential for observing dynamic neural processes in the central nervous system in conditions of health and disease.This review first discusses in vivo imaging of the mouse spinal cord with a focus on the latest imaging techniques,and then analyzes the dynamic biological response of spinal cord sensory and motor neurons to SCI.We then summarize and compare the techniques behind these studies and clarify the advantages of in vivo imaging compared with traditional neuroscience examinations.Finally,we identify the challenges and possible solutions for spinal cord neuron imaging.展开更多
The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are...The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are used to start networks.Here we explored the effects of diethyl(3,4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ)on neurite developmental features in HT22 neuronal cells.In this work,we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22cells expressing mutant Tau(mTau)cDNA.To investigate DDQ chara cteristics,cell viability,biochemical,molecular,western blotting,and immunocytochemistry were used.Neurite outgrowth is evaluated through the segmentation and measurement of neural processes.These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth.These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22.DDQ-treated mTau-HT22 cells(HT22 cells transfected with cDNA mutant Tau)were seen to display increased levels of synaptophysin,MAP-2,andβ-tubulin.Additionally,we confirmed and noted reduced levels of both total and p-Tau,as well as elevated levels of microtubule-associated protein 2,β-tubulin,synaptophysin,vesicular acetylcholine transporter,and the mitochondrial biogenesis protein-pe roxisome prolife rator-activated receptor-gamma coactivator-1α.In mTa u-expressed HT22 neurons,we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth.Our findings conclude that mTa u-HT22(Alzheimer's disease)cells treated with DDQ have functional neurite developmental chara cteristics.The key finding is that,in mTa u-HT22 cells,DDQ preserves neuronal structure and may even enhance nerve development function with mTa u inhibition.展开更多
Artificial neural networks(ANN) have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem. Th...Artificial neural networks(ANN) have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem. This letter reports a dropout neuronal unit(1R1T-DNU) based on one memristor–one electrolyte-gated transistor with an ultralow energy consumption of 25 p J/spike. A dropout neural network is constructed based on such a device and has been verified by MNIST dataset, demonstrating high recognition accuracies(> 90%) within a large range of dropout probabilities up to40%. The running time can be reduced by increasing dropout probability without a significant loss in accuracy. Our results indicate the great potential of introducing such 1R1T-DNUs in full-hardware neural networks to enhance energy efficiency and to solve the overfitting problem.展开更多
The Hodgkin–Huxley model assumes independent ion channel activation,although mutual interactions are common in biological systems.This raises the problem why neurons would favor independent over cooperative channel a...The Hodgkin–Huxley model assumes independent ion channel activation,although mutual interactions are common in biological systems.This raises the problem why neurons would favor independent over cooperative channel activation.In this study,we evaluate how cooperative activation of sodium channels affects the neuron’s information processing and energy consumption.Simulations of the stochastic Hodgkin–Huxley model with cooperative activation of sodium channels show that,while cooperative activation enhances neuronal information processing capacity,it greatly increases the neuron’s energy consumption.As a result,cooperative activation of sodium channel degrades the energy efficiency for neuronal information processing.This discovery improves our understanding of the design principles for neural systems,and may provide insights into future designs of the neuromorphic computing devices as well as systematic understanding of pathological mechanisms for neural diseases.展开更多
Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuron...Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuronal activity orchestrate complex motor patterns or allow learning from previous experience?To answer such questions,we need the ability not only to record,but also to modulate neuronal activity in both space(e.g.,neuronal subsets)and time.展开更多
The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other.The memory characteristic of memristors makes them suitable for simulating...The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other.The memory characteristic of memristors makes them suitable for simulating neuronal synapses with plasticity.In this paper,a memristor is used to simulate a synapse,a discrete small-world neuronal network is constructed based on Rulkov neurons and its dynamical behavior is explored.We explore the influence of system parameters on the dynamical behaviors of the discrete small-world network,and the system shows a variety of firing patterns such as spiking firing and triangular burst firing when the neuronal parameterαis changed.The results of a numerical simulation based on Matlab show that the network topology can affect the synchronous firing behavior of the neuronal network,and the higher the reconnection probability and number of the nearest neurons,the more significant the synchronization state of the neurons.In addition,by increasing the coupling strength of memristor synapses,synchronization performance is promoted.The results of this paper can boost research into complex neuronal networks coupled with memristor synapses and further promote the development of neuroscience.展开更多
Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli.In particular,how these neurons respond to physical exercise...Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli.In particular,how these neurons respond to physical exercise has long been an area of active research.Studies of the vertebrate locomotor system’s adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise.In this brief review,we highlight recent results and insights from the field with a focus on the following mechanisms:(a)alterations in neuronal excitability during acute exercise;(b)alterations in neuronal excitability after chronic exercise;(c)exercise-induced changes in neuronal membrane properties via modulation of ion channel activity;(d)exercise-enhanced dendritic plasticity;and(e)exercise-induced alterations in neuronal gene expression and protein synthesis.Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise.展开更多
The unfolded protein response(UPR)is a cellular stress response pathway activated when the endoplasmic reticulum,a crucial organelle for protein folding and modification,encounters an accumulation of unfolded or misfo...The unfolded protein response(UPR)is a cellular stress response pathway activated when the endoplasmic reticulum,a crucial organelle for protein folding and modification,encounters an accumulation of unfolded or misfolded proteins.The UPR aims to restore endoplasmic reticulum homeostasis by enhancing protein folding capacity,reducing protein biosynthesis,and promoting protein degradation.It also plays a pivotal role in coordinating signaling cascades to determine cell fate and function in response to endoplasmic reticulum stress.Recent research has highlighted the significance of the UPR not only in maintaining endoplasmic reticulum homeostasis but also in influencing various physiological processes in the nervous system.Here,we provide an overview of recent findings that underscore the UPR’s involvement in preserving the function and viability of neuronal and myelinating cells under physiological conditions,and highlight the critical role of the UPR in brain development,memory storage,retinal cone development,myelination,and maintenance of myelin thickness.展开更多
The FitzHugh–Nagumo neuron circuit integrates a piezoelectric ceramic to form a piezoelectric sensing neuron,which can capture external sound signals and simulate the auditory neuron system.Two piezoelectric sensing ...The FitzHugh–Nagumo neuron circuit integrates a piezoelectric ceramic to form a piezoelectric sensing neuron,which can capture external sound signals and simulate the auditory neuron system.Two piezoelectric sensing neurons are coupled by a parallel circuit consisting of a Josephson junction and a linear resistor,and a binaural auditory system is established.Considering the non-singleness of external sound sources,the high–low frequency signal is used as the input signal to study the firing mode transition and synchronization of this system.It is found that the angular frequency of the high–low frequency signal is a key factor in determining whether the dynamic behaviors of two coupled neurons are synchronous.When they are in synchronization at a specific angular frequency,the changes in physical parameters of the input signal and the coupling strength between them will not destroy their synchronization.In addition,the firing mode of two coupled auditory neurons in synchronization is affected by the characteristic parameters of the high–low frequency signal rather than the coupling strength.The asynchronous dynamic behavior and variations in firing modes will harm the auditory system.These findings could help determine the causes of hearing loss and devise functional assistive devices for patients.展开更多
This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates...This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping.展开更多
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor...Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.展开更多
Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidati...Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation,plays a vital role in the death of dopaminergic neurons.However,the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated.NADPH oxidase 4 is related to oxidative stress,however,whether it regulates dopaminergic neuronal ferroptosis remains unknown.The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis,and if so,by what mechanism.We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced Parkinson's disease model.NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons.Moreover,NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals.Mechanistically,we found that NADPH oxidase 4 interacted with activated protein kinase Cαto prevent ferroptosis of dopaminergic neurons.Furthermore,by lowering the astrocytic lipocalin-2 expression,NADPH oxidase 4 inhibition reduced 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation.These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation,which contribute to dopaminergic neuron death,suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease.展开更多
Objective To investigate the effect of Zuogui Jiangtang Jieyu Formula(左归降糖解郁方,ZJJF)on hippocampal neuron apoptosis in diabetic rats with depression and to ascertain whether its mechanism involves the regulation...Objective To investigate the effect of Zuogui Jiangtang Jieyu Formula(左归降糖解郁方,ZJJF)on hippocampal neuron apoptosis in diabetic rats with depression and to ascertain whether its mechanism involves the regulation of JNK signaling pathway.Methods(i)A total of 72 specific pathogen-free(SPF)grade male Sprague Dawley(SD)rats were randomly divided into six groups,with 12 rats in each group:control,model,metformin(Met,0.18 g/kg)+fluoxetine(Flu,1.8 mg/kg),and the high-,medium-,and low-ZJJF dosages(ZJJF-H,20.52 g/kg;ZJJF-M,10.26 g/kg;ZJJF-L,5.13 g/kg)groups.All groups except control group were injected once via the tail vein with streptozotocin(STZ,38 mg/kg)combined with 28 d of chronic unpredictable mild stress(CUMS)to establish diabetic rat models with depression.During the CUMS modeling period,treatments were administered via gavage,with control and model groups receiving an equivalent volume of distilled water for 28 d.The efficacy of ZJJF in reducing blood sugar and alleviating depression was evaluated by measuring fasting blood glucose,insulin,and glycated hemoglobin levels,along with behavioral assessments,including the open field test(OFT),forced swim test(FST),and sucrose preference test(SPT).Hippocampal tissue damage and neuronal apoptosis were evaluated using hematoxylin-eosin(HE)staining and terminal deoxynucleotidyl transferase-mediated dUTP nickend labeling(TUNEL)staining.Apoptosis-related proteins Bax,Bcl-2,caspase-3,and the expression levels of JNK/Elk-1/c-fos signaling pathway were detected using Western blot and real-time quantitative polymerase chain reaction(RT-qPCR).(ii)To further elucidate the role of JNK signaling pathway in hippocampal neuronal apoptosis and the pharmacological effects of ZJJF,an additional 50 SPF grade male SD rats were randomly divided into five groups,with 10 rats in each group:control,model,SP600125(SP6,a JNK antagonist,10 mg/kg),ZJJF(20.52 g/kg),and ZJJF(20.52 g/kg)+Anisomycin(Aniso,a JNK agonist,15 mg/kg)groups.Except for control group,all groups were established as diabetic rat models with depression,and treatments were administered via gavage for ZJJF and intraperitoneal injection for SP6 and Aniso for 28 d during the CUMS modeling period.Behavioral changes in rats were evaluated through the OFT,FST,and SPT,and hippocampal neuron damage and apoptosis were observed using HE staining,Nissl staining,TUNEL staining,and transmission electron microscopy(TEM).Changes in apoptosis-related proteins and JNK signaling pathway in the hippocampal tissues of rats were also analyzed.展开更多
Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangle...Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangles,in the brain.The NLRP3 inflammasome may play a role in the transition from amyloid-βdeposition to tau phosphorylation and aggregation.Because NLRP3 is primarily found in brain microglia,and tau is predominantly located in neurons,it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines.Here,we found that neurons also express NLRP3 in vitro and in vivo,and that neuronal NLRP3 regulates tau phosphorylation.Using biochemical methods,we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons.In primary neurons and the neuroblastoma cell line Neuro2A,FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-βis present.In the brains of aged wild-type mice and a mouse model of Alzheimer's disease,FUBP3 expression was markedly increased in cortical neurons.Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses.We also found that FUBP3 trimmed the 5′end of DNA fragments that it bound,implying that FUBP3 functions in stress-induced responses.These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to–phospho-tau transition than microglial NLRP3,and that amyloid-βfundamentally alters the regulatory mechanism of NLRP3 expression in neurons.Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice,FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.11402157)Applied Basic Research Programs of Shanxi Province,China (Grant No.201901D111086)。
文摘We discover a phenomenon of inhibition effect induced by fractional Gaussian noise in a neuronal system. Firstly,essential properties of fractional Brownian motion(fBm) and generation of fractional Gaussian noise(fGn) are presented,and representative sample paths of fBm and corresponding spectral density of fGn are discussed at different Hurst indexes.Next, we consider the effect of fGn on neuronal firing, and observe that neuronal firing decreases first and then increases with increasing noise intensity and Hurst index of fGn by studying the time series evolution. To further quantify the inhibitory effect of fGn, by introducing the average discharge rate, we investigate the effects of noise and external current on neuronal firing, and find the occurrence of inhibitory effect about noise intensity and Hurst index of f Gn at a certain level of current. Moreover, the inhibition effect is not easy to occur when the noise intensity and Hurst index are too large or too small. In view of opposite action mechanism compared with stochastic resonance, this suppression phenomenon is called inverse stochastic resonance(ISR). Finally, the inhibitory effect induced by fGn is further verified based on the inter-spike intervals(ISIs) in the neuronal system. Our work lays a solid foundation for future study of non-Gaussian-type noise on neuronal systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51737003 and 51977060)the Natural Science Foundation of Hebei Province,China(Grant No.E2011202051)。
文摘Changes in the concentration of charged ions in neurons can generate induced electric fields,which can further modulate cell membrane potential.In this paper,Fourier coefficients are used to investigate the effect of electric field on vibrational resonance for signal detection in a single neuron model and a bidirectionally coupled neuron model,respectively.The study found that the internal electric field weakens vibrational resonance by changing two factors,membrane potential and phase-locked mode,while the periodic external electric field of an appropriate frequency significantly enhances the vibrational resonance,suggesting that the external electric field may play a constructive role in the detection of weak signals in the brain and neuronal systems.Furthermore,when the coupling of two neurons is considered,the effect of the electric field on the vibrational resonance is similar to that of a single neuron.The paper also illustrates the effect of electric field coupling on vibrational resonance.This study may provide a new theoretical basis for understanding information encoding and transmission in neurons.
基金Project supported by the National Natural Science Foundation of China(Grant No.11672233)the Fundamental Research Funds for the Central Universities,China(Grant No.3102017AX008)the Seed Foundation of Innovation and Creation for Graduate Student in Northwestern Polytechnical University,China(Grant No.ZZ2018173)
文摘With the help of a magnetic flux variable, the effects of stochastic electromagnetic disturbances on autapse Hodgkin–Huxley neuronal systems are studied systematically. Firstly, owing to the autaptic function, the inter-spike interval series of an autapse neuron not only bifurcates, but also presents a quasi-periodic characteristic. Secondly, an irregular mixed-mode oscillation induced by a specific electromagnetic disturbance is analyzed using the coefficient of variation of inter-spike intervals. It is shown that the neuronal discharge activity has certain selectivity to the noise intensity, and the appropriate noise intensity can induce the significant mixed-mode oscillations. Finally, the modulation effects of electromagnetic disturbances on a ring field-coupled neuronal network with autaptic structures are explored quantitatively using the average spiking frequency and the average coefficient of variation. The electromagnetic disturbances can not only destroy the continuous and synchronous discharge state, but also induce the resting neurons to generate the intermittent discharge mode and realize the transmission of neural signals in the neuronal network. The studies can provide some theoretical guidance for applying electromagnetic disturbances to effectively control the propagation of neural signals and treat mental illness.
基金supported by the National Natural Science Foundation of China,No.82073783(to YY)the Natural Science Foundation of Beijing,No.7212160(to YY).
文摘Traumatic brain injury results in neuronal loss and glial scar formation.Replenishing neurons and eliminating the consequences of glial scar formation are essential for treating traumatic brain injury.Neuronal reprogramming is a promising strategy to convert glial scars to neural tissue.However,previous studies have reported inconsistent results.In this study,an AAV9P1 vector incorporating an astrocyte-targeting P1 peptide and glial fibrillary acidic protein promoter was used to achieve dual-targeting of astrocytes and the glial scar while minimizing off-target effects.The results demonstrate that AAV9P1 provides high selectivity of astrocytes and reactive astrocytes.Moreover,neuronal reprogramming was induced by downregulating the polypyrimidine tract-binding protein 1 gene via systemic administration of AAV9P1 in a mouse model of traumatic brain injury.In summary,this approach provides an improved gene delivery vehicle to study neuronal programming and evidence of its applications for traumatic brain injury.
基金supported by Stavros Niarhos FoundationGreek‘Flagship Action for the Study of Neurodegenerative Diseases on the Basis of Precision Medicine’(to DT).
文摘Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches.A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells towards the neuronal state is achieved due to sophisticated mechanisms of epigenetic,transcriptional,and post-transcriptional regulation.Understanding these neurogenic mechanisms is of major importance,not only for shedding light on very complex and crucial developmental processes,but also for the identification of putative reprogramming factors,that harbor hierarchically central regulatory roles in the course of neurogenesis and bare thus the capacity to drive direct reprogramming towards the neuronal fate.The major transcriptional programs that orchestrate the neurogenic process have been the focus of research for many years and key neurogenic transcription factors,as well as repressor complexes,have been identified and employed in direct reprogramming protocols to convert non-neuronal cells,into functional neurons.The post-transcriptional regulation of gene expression during nervous system development has emerged as another important and intricate regulatory layer,strongly contributing to the complexity of the mechanisms controlling neurogenesis and neuronal function.In particular,recent advances are highlighting the importance of specific RNA binding proteins that control major steps of mRNA life cycle during neurogenesis,such as alternative splicing,polyadenylation,stability,and translation.Apart from the RNA binding proteins,microRNAs,a class of small non-coding RNAs that block the translation of their target mRNAs,have also been shown to play crucial roles in all the stages of the neurogenic process,from neural stem/progenitor cell proliferation,neuronal differentiation and migration,to functional maturation.Here,we provide an overview of the most prominent post-transcriptional mechanisms mediated by RNA binding proteins and microRNAs during the neurogenic process,giving particular emphasis on the interplay of specific RNA binding proteins with neurogenic microRNAs.Taking under consideration that the molecular mechanisms of neurogenesis exert high similarity to the ones driving direct neuronal reprogramming,we also discuss the current advances in in vitro and in vivo direct neuronal reprogramming approaches that have employed microRNAs or RNA binding proteins as reprogramming factors,highlighting the so far known mechanisms of their reprogramming action.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDB39050600(to RL)the National Natural Science Foundation of China,No.81971610(to RL)Beijing Rehabilitation Hospital Introduction of Talent Research Start-up Fund,No.2021R-008(to JZ)。
文摘Neuronal injury,aging,and cerebrovascular and neurodegenerative diseases such as cerebral infarction,Alzheimer’s disease,Parkinson’s disease,frontotemporal dementia,amyotrophic lateral sclerosis,and Huntington’s disease are characte rized by significant neuronal loss.Unfo rtunately,the neurons of most mammals including humans do not possess the ability to self-regenerate.Replenishment of lost neurons becomes an appealing therapeutic strategy to reve rse the disease phenotype.Transplantation of pluripotent neural stem cells can supplement the missing neurons in the brain,but it carries the risk of causing gene mutation,tumorigenesis,severe inflammation,and obstructive hydrocephalus induced by brain edema.Conversion of neural or non-neural lineage cells into functional neurons is a promising strategy for the diseases involving neuron loss,which may overcome the above-mentioned disadvantages of neural stem cell therapy.Thus far,many strategies to transfo rm astrocytes,fibroblasts,microglia,Muller glia,NG2 cells,and other glial cells to mature and functional neurons,or for the conversion between neuronal subtypes have been developed thro ugh the regulation of transcription factors,polypyrimidine tra ct binding protein 1(PTBP1),and small chemical molecules or are based on a combination of several factors and the location in the central nervous system.However,some recent papers did not obtain expected results,and discrepancies exist.Therefore,in this review,we discuss the history of neuronal transdifferentiation,summarize the strategies for neuronal replenishment and conversion from glia,especially astrocytes,and point out that biosafety,new strategies,and the accurate origin of the truly co nverted neurons in vivo should be focused upon in future studies.It also arises the attention of replenishing the lost neurons from glia by gene therapies such as up-regulation of some transc ription factors or downregulation of PTBP1 or drug interfe rence therapies.
基金supported by the National Natural Science Foundation of China,No.82272478(to PT)。
文摘Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury(SCI).However,this subject has been neglected in part because appropriate tools are lacking.Emerging in vivo imaging and labeling methods offer great potential for observing dynamic neural processes in the central nervous system in conditions of health and disease.This review first discusses in vivo imaging of the mouse spinal cord with a focus on the latest imaging techniques,and then analyzes the dynamic biological response of spinal cord sensory and motor neurons to SCI.We then summarize and compare the techniques behind these studies and clarify the advantages of in vivo imaging compared with traditional neuroscience examinations.Finally,we identify the challenges and possible solutions for spinal cord neuron imaging.
基金supported by NIH grants AG079264(to PHR)and AG071560(to APR)。
文摘The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are used to start networks.Here we explored the effects of diethyl(3,4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ)on neurite developmental features in HT22 neuronal cells.In this work,we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22cells expressing mutant Tau(mTau)cDNA.To investigate DDQ chara cteristics,cell viability,biochemical,molecular,western blotting,and immunocytochemistry were used.Neurite outgrowth is evaluated through the segmentation and measurement of neural processes.These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth.These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22.DDQ-treated mTau-HT22 cells(HT22 cells transfected with cDNA mutant Tau)were seen to display increased levels of synaptophysin,MAP-2,andβ-tubulin.Additionally,we confirmed and noted reduced levels of both total and p-Tau,as well as elevated levels of microtubule-associated protein 2,β-tubulin,synaptophysin,vesicular acetylcholine transporter,and the mitochondrial biogenesis protein-pe roxisome prolife rator-activated receptor-gamma coactivator-1α.In mTa u-expressed HT22 neurons,we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth.Our findings conclude that mTa u-HT22(Alzheimer's disease)cells treated with DDQ have functional neurite developmental chara cteristics.The key finding is that,in mTa u-HT22 cells,DDQ preserves neuronal structure and may even enhance nerve development function with mTa u inhibition.
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1202600 and 2023YFE0208600)in part by the National Natural Science Foundation of China (Grant Nos. 62174082, 92364106, 61921005, 92364204, and 62074075)。
文摘Artificial neural networks(ANN) have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem. This letter reports a dropout neuronal unit(1R1T-DNU) based on one memristor–one electrolyte-gated transistor with an ultralow energy consumption of 25 p J/spike. A dropout neural network is constructed based on such a device and has been verified by MNIST dataset, demonstrating high recognition accuracies(> 90%) within a large range of dropout probabilities up to40%. The running time can be reduced by increasing dropout probability without a significant loss in accuracy. Our results indicate the great potential of introducing such 1R1T-DNUs in full-hardware neural networks to enhance energy efficiency and to solve the overfitting problem.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2021-62)the Shanghai Municipal Science and Technology Major Project(Grant No.2018SHZDZX01)Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence(LCNBI)and ZJLab,and the National Natural Science Foundation of China(Grant No.12247101).
文摘The Hodgkin–Huxley model assumes independent ion channel activation,although mutual interactions are common in biological systems.This raises the problem why neurons would favor independent over cooperative channel activation.In this study,we evaluate how cooperative activation of sodium channels affects the neuron’s information processing and energy consumption.Simulations of the stochastic Hodgkin–Huxley model with cooperative activation of sodium channels show that,while cooperative activation enhances neuronal information processing capacity,it greatly increases the neuron’s energy consumption.As a result,cooperative activation of sodium channel degrades the energy efficiency for neuronal information processing.This discovery improves our understanding of the design principles for neural systems,and may provide insights into future designs of the neuromorphic computing devices as well as systematic understanding of pathological mechanisms for neural diseases.
文摘Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuronal activity orchestrate complex motor patterns or allow learning from previous experience?To answer such questions,we need the ability not only to record,but also to modulate neuronal activity in both space(e.g.,neuronal subsets)and time.
基金Project supported by the Key Projects of Hunan Provincial Department of Education (Grant No.23A0133)the Natural Science Foundation of Hunan Province (Grant No.2022JJ30572)the National Natural Science Foundations of China (Grant No.62171401)。
文摘The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other.The memory characteristic of memristors makes them suitable for simulating neuronal synapses with plasticity.In this paper,a memristor is used to simulate a synapse,a discrete small-world neuronal network is constructed based on Rulkov neurons and its dynamical behavior is explored.We explore the influence of system parameters on the dynamical behaviors of the discrete small-world network,and the system shows a variety of firing patterns such as spiking firing and triangular burst firing when the neuronal parameterαis changed.The results of a numerical simulation based on Matlab show that the network topology can affect the synchronous firing behavior of the neuronal network,and the higher the reconnection probability and number of the nearest neurons,the more significant the synchronization state of the neurons.In addition,by increasing the coupling strength of memristor synapses,synchronization performance is promoted.The results of this paper can boost research into complex neuronal networks coupled with memristor synapses and further promote the development of neuroscience.
基金supported by grants from the National Natural Science Foundation of China(NSFC)to YD(32171129)from China Postdoctoral Science Foundation to YC(2023M731112)from NSFC to RG(32260216)。
文摘Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli.In particular,how these neurons respond to physical exercise has long been an area of active research.Studies of the vertebrate locomotor system’s adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise.In this brief review,we highlight recent results and insights from the field with a focus on the following mechanisms:(a)alterations in neuronal excitability during acute exercise;(b)alterations in neuronal excitability after chronic exercise;(c)exercise-induced changes in neuronal membrane properties via modulation of ion channel activity;(d)exercise-enhanced dendritic plasticity;and(e)exercise-induced alterations in neuronal gene expression and protein synthesis.Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise.
基金supported by grants from the National Institutes of Health,No.NS105689(to WL)the Department of Defense through the Multiple Sclerosis Research Program,No.W81XWH-22-1-0757(to WL).
文摘The unfolded protein response(UPR)is a cellular stress response pathway activated when the endoplasmic reticulum,a crucial organelle for protein folding and modification,encounters an accumulation of unfolded or misfolded proteins.The UPR aims to restore endoplasmic reticulum homeostasis by enhancing protein folding capacity,reducing protein biosynthesis,and promoting protein degradation.It also plays a pivotal role in coordinating signaling cascades to determine cell fate and function in response to endoplasmic reticulum stress.Recent research has highlighted the significance of the UPR not only in maintaining endoplasmic reticulum homeostasis but also in influencing various physiological processes in the nervous system.Here,we provide an overview of recent findings that underscore the UPR’s involvement in preserving the function and viability of neuronal and myelinating cells under physiological conditions,and highlight the critical role of the UPR in brain development,memory storage,retinal cone development,myelination,and maintenance of myelin thickness.
基金Project supported by the National Natural Science Foundation of China(Grant No.11605014)。
文摘The FitzHugh–Nagumo neuron circuit integrates a piezoelectric ceramic to form a piezoelectric sensing neuron,which can capture external sound signals and simulate the auditory neuron system.Two piezoelectric sensing neurons are coupled by a parallel circuit consisting of a Josephson junction and a linear resistor,and a binaural auditory system is established.Considering the non-singleness of external sound sources,the high–low frequency signal is used as the input signal to study the firing mode transition and synchronization of this system.It is found that the angular frequency of the high–low frequency signal is a key factor in determining whether the dynamic behaviors of two coupled neurons are synchronous.When they are in synchronization at a specific angular frequency,the changes in physical parameters of the input signal and the coupling strength between them will not destroy their synchronization.In addition,the firing mode of two coupled auditory neurons in synchronization is affected by the characteristic parameters of the high–low frequency signal rather than the coupling strength.The asynchronous dynamic behavior and variations in firing modes will harm the auditory system.These findings could help determine the causes of hearing loss and devise functional assistive devices for patients.
文摘This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping.
文摘Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.
基金supported by the National Natural Science Foundation of China,Nos.82271444(to JP),82271268(to BZ),and 82001346(to YL)the National Key Research and Development Program of China,No.2022YFE0210100(to BZ)。
文摘Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation,plays a vital role in the death of dopaminergic neurons.However,the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated.NADPH oxidase 4 is related to oxidative stress,however,whether it regulates dopaminergic neuronal ferroptosis remains unknown.The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis,and if so,by what mechanism.We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced Parkinson's disease model.NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons.Moreover,NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals.Mechanistically,we found that NADPH oxidase 4 interacted with activated protein kinase Cαto prevent ferroptosis of dopaminergic neurons.Furthermore,by lowering the astrocytic lipocalin-2 expression,NADPH oxidase 4 inhibition reduced 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation.These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation,which contribute to dopaminergic neuron death,suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease.
基金National Natural Science Foundation of China(82104836 and 82104793)Science and Technology Talent Promotion Project of Hunan Province(2023TJ-N22).
文摘Objective To investigate the effect of Zuogui Jiangtang Jieyu Formula(左归降糖解郁方,ZJJF)on hippocampal neuron apoptosis in diabetic rats with depression and to ascertain whether its mechanism involves the regulation of JNK signaling pathway.Methods(i)A total of 72 specific pathogen-free(SPF)grade male Sprague Dawley(SD)rats were randomly divided into six groups,with 12 rats in each group:control,model,metformin(Met,0.18 g/kg)+fluoxetine(Flu,1.8 mg/kg),and the high-,medium-,and low-ZJJF dosages(ZJJF-H,20.52 g/kg;ZJJF-M,10.26 g/kg;ZJJF-L,5.13 g/kg)groups.All groups except control group were injected once via the tail vein with streptozotocin(STZ,38 mg/kg)combined with 28 d of chronic unpredictable mild stress(CUMS)to establish diabetic rat models with depression.During the CUMS modeling period,treatments were administered via gavage,with control and model groups receiving an equivalent volume of distilled water for 28 d.The efficacy of ZJJF in reducing blood sugar and alleviating depression was evaluated by measuring fasting blood glucose,insulin,and glycated hemoglobin levels,along with behavioral assessments,including the open field test(OFT),forced swim test(FST),and sucrose preference test(SPT).Hippocampal tissue damage and neuronal apoptosis were evaluated using hematoxylin-eosin(HE)staining and terminal deoxynucleotidyl transferase-mediated dUTP nickend labeling(TUNEL)staining.Apoptosis-related proteins Bax,Bcl-2,caspase-3,and the expression levels of JNK/Elk-1/c-fos signaling pathway were detected using Western blot and real-time quantitative polymerase chain reaction(RT-qPCR).(ii)To further elucidate the role of JNK signaling pathway in hippocampal neuronal apoptosis and the pharmacological effects of ZJJF,an additional 50 SPF grade male SD rats were randomly divided into five groups,with 10 rats in each group:control,model,SP600125(SP6,a JNK antagonist,10 mg/kg),ZJJF(20.52 g/kg),and ZJJF(20.52 g/kg)+Anisomycin(Aniso,a JNK agonist,15 mg/kg)groups.Except for control group,all groups were established as diabetic rat models with depression,and treatments were administered via gavage for ZJJF and intraperitoneal injection for SP6 and Aniso for 28 d during the CUMS modeling period.Behavioral changes in rats were evaluated through the OFT,FST,and SPT,and hippocampal neuron damage and apoptosis were observed using HE staining,Nissl staining,TUNEL staining,and transmission electron microscopy(TEM).Changes in apoptosis-related proteins and JNK signaling pathway in the hippocampal tissues of rats were also analyzed.
基金supported by a grant from Key Laboratory of Alzheimer's Disease of Zhejiang Province,Institute of Aging,Wenzhou Medical University,No.ZJAD-2021002(to ZW)。
文摘Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangles,in the brain.The NLRP3 inflammasome may play a role in the transition from amyloid-βdeposition to tau phosphorylation and aggregation.Because NLRP3 is primarily found in brain microglia,and tau is predominantly located in neurons,it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines.Here,we found that neurons also express NLRP3 in vitro and in vivo,and that neuronal NLRP3 regulates tau phosphorylation.Using biochemical methods,we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons.In primary neurons and the neuroblastoma cell line Neuro2A,FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-βis present.In the brains of aged wild-type mice and a mouse model of Alzheimer's disease,FUBP3 expression was markedly increased in cortical neurons.Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses.We also found that FUBP3 trimmed the 5′end of DNA fragments that it bound,implying that FUBP3 functions in stress-induced responses.These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to–phospho-tau transition than microglial NLRP3,and that amyloid-βfundamentally alters the regulatory mechanism of NLRP3 expression in neurons.Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice,FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.