Structural plasticity is critical for the functional diversity of neurons in the brain.Experimental autoimmune encephalomyelitis(EAE)is the most commonly used model for multiple sclerosis(MS),successfully mimicking it...Structural plasticity is critical for the functional diversity of neurons in the brain.Experimental autoimmune encephalomyelitis(EAE)is the most commonly used model for multiple sclerosis(MS),successfully mimicking its key pathological features(inflammation,demyelination,axonal loss,and gliosis)and clinical symptoms(motor and non-motordysfunctions).Recentstudieshave demonstrated the importance of synaptic plasticity in EAE pathogenesis.In the present study,we investigated the features of behavioral alteration and hippocampal structural plasticity in EAE-affected mice in the early phase(11 days post-immunization,DPI)and chronic phase(28DPI).EAE-affected mice exhibited hippocampus-related behavioral dysfunction in the open field test during both early and chronic phases.Dendritic complexity was largely affected in the cornu ammonis 1(CA1)and CA3 apical and dentate gyrus(DG)subregions of the hippocampus during the chronic phase,while this effect was only noted in the CA1 apical subregion in the early phase.Moreover,dendritic spine density was reduced in the hippocampal CA1 and CA3 apical/basal and DG subregions in the early phase of EAE,but only reduced in the DG subregion during the chronic phase.Furthermore,mRNA levels of proinflammatory cytokines(Il1β,Tnfα,and Ifnγ)and glial cell markers(Gfap and Cd68)were significantly increased,whereas the expression of activity-regulated cytoskeletonassociated protein(ARC)was reduced during the chronic phase.Similarly,exposure to the aforementioned cytokines in primary cultures of hippocampal neurons reduced dendritic complexity and ARC expression.Primary cultures of hippocampal neurons also showed significantly reduced extracellular signal-regulated kinase(ERK)phosphorylation upon treatment with proinflammatory cytokines.Collectively,these results suggest that autoimmune neuroinflammation alters structural plasticity in the hippocampus,possibly through the ERK-ARC pathway,indicating that this alteration may be associated with hippocampal dysfunctions in EAE.展开更多
Previous studies have shown that chrysophanol protects against learning and memory impairments in lead-exposed adult mice. In the present study, we investigated whether chrysophanol can alleviate learning and memory d...Previous studies have shown that chrysophanol protects against learning and memory impairments in lead-exposed adult mice. In the present study, we investigated whether chrysophanol can alleviate learning and memory dysfunction and hippocampal neuronal injury in lead-exposed neonatal mice. At the end of lactation, chrysophanol(0.1, 1.0, 10.0 mg/kg) was administered to the neonatal mice by intraperitoneal injection for 15 days. Chrysophanol significantly alleviated injury to hippocampal neurons and improved learning and memory abilities in the lead-poisoned neonatal mice. Chrysophanol also significantly decreased lead content in blood, brain, heart, spleen, liver and kidney in the lead-exposed neonatal mice. The levels of malondialdehyde in the brain, liver and kidney were significantly reduced, and superoxide dismutase and glutathione peroxidase activities were significantly increased after chrysophanol treatment. Collectively, these findings indicate that chrysophanol can significantly reduce damage to hippocampal neurons in lead-exposed neonatal mice.展开更多
Objective To detect the effects of microwave on calcium levels in primary hippocampal neurons and primary cardiomyocytes by the real-time microwave exposure combined with laser scanning confocal microscopy. Methods Th...Objective To detect the effects of microwave on calcium levels in primary hippocampal neurons and primary cardiomyocytes by the real-time microwave exposure combined with laser scanning confocal microscopy. Methods The primary hippocampal neurons and primary cardiomyocytes were cultured and labeled with probes, including Fluo-4 AM, Mag-Fluo-AM, and Rhod-2, to reflect the levels of whole calcium [Ca], endoplasmic reticulum calcium [Ca]ER, and mitochondrial calcium [Ca]MIT, respectively. Then, the cells were exposed to a pulsed microwave of 2.856 GHz with specific absorption rate(SAR) values of 0, 4, and 40 W/kg for 6 min to observe the changes in calcium levels. Results The results showed that the 4 and 40 W/kg microwave radiation caused a significant decrease in the levels of [Ca], [Ca]ER, and [Ca]MIT in primary hippocampal neurons. In the primary cardiomyocytes, only the 40 W/kg microwave radiation caused the decrease in the levels of [Ca], [Ca]ER, and [Ca]MIT. Primary hippocampal neurons were more sensitive to microwave exposure than primary cardiomyocytes. The mitochondria were more sensitive to microwave exposure than the endoplasmic reticulum. Conclusion The calcium efflux was occurred during microwave exposure in primary hippocampal neurons and primary cardiomyocytes. Additionally, neurons and mitochondria were sensitive cells and organelle respectively.展开更多
Ginsenoside Rg1(Rg1) has anti-aging and anti-neurodegenerative effects. However, the mechanisms underlying these actions remain unclear. The aim of the present study was to determine whether Rg1 affects hippocampal ...Ginsenoside Rg1(Rg1) has anti-aging and anti-neurodegenerative effects. However, the mechanisms underlying these actions remain unclear. The aim of the present study was to determine whether Rg1 affects hippocampal survival and neurite outgrowth in vitro after exposure to amyloid-beta peptide fragment 25–35(Aβ_(25–35)), and to explore whether the extracellular signal-regulated kinase(ERK) and Akt signaling pathways are involved in these biological processes. We cultured hippocampal neurons from newborn rats for 24 hours, then added Rg1 to the medium for another 24 hours, with or without pharmacological inhibitors of the mitogen-activated protein kinase(MAPK) family or Akt signaling pathways for a further 24 hours. We then immunostained the neurons for growth associated protein-43, and measured neurite length. In a separate experiment, we exposed cultured hippocampal neurons to Aβ_(25–35) for 30 minutes, before adding Rg1 for 48 hours, with or without Akt or MAPK inhibitors, and assessed neuronal survival using Hoechst 33258 staining, and phosphorylation of ERK1/2 and Akt by western blot analysis. Rg1 induced neurite outgrowth, and this effect was blocked by API-2(Akt inhibitor) and PD98059(MAPK/ERK kinase inhibitor), but not by SP600125 or SB203580(inhibitors of c-Jun N-terminal kinase and p38 MAPK, respectively). Consistent with this effect, Rg1 upregulated the phosphorylation of Akt and ERK1/2; these effects were reversed by API-2 and PD98059, respectively. In addition, Rg1 significantly reversed Aβ_(25–35)-induced apoptosis; this effect was blocked by API-2 and PD98059, but not by SP600125 or SB203580. Finally, Rg1 significantly reversed the Aβ_(25–35)-induced decrease in Akt and ERK1/2 phosphorylation, but API-2 prevented this reversal. Our results indicate that Rg1 enhances neurite outgrowth and protects against Aβ_(25–35)-induced damage, and that its mechanism may involve the activation of Akt and ERK1/2 signaling.展开更多
Hypoxic injuries during fetal distress have been shown to cause reduced expression of micro RNA-27a(mi R-27a),which regulates sensitivity of cortical neurons to apoptosis.We hypothesized that miR-27 a overexpression...Hypoxic injuries during fetal distress have been shown to cause reduced expression of micro RNA-27a(mi R-27a),which regulates sensitivity of cortical neurons to apoptosis.We hypothesized that miR-27 a overexpression attenuates hypoxia- and ischemia-induced neuronal apoptosis by regulating FOXO1,an important transcription factor for regulating the oxidative stress response.miR-27 a mimic was transfected into hippocampal neurons to overexpress miR-27 a.Results showed increased hippocampal neuronal viability and decreased caspase-3 expression.The luciferase reporter gene system demonstrated that mi R-27 a directly binded to FOXO1 3′UTR in hippocampal neurons and inhibited FOXO1 expression,suggesting that FOXO1 was the target gene for mi R-27 a.These findings confirm that mi R-27 a protects hippocampal neurons against oxygen-glucose deprivation-induced injuries.The mechanism might be mediated by modulation of FOXO1 and apoptosis-related gene caspase-3 expression.展开更多
In this study, we investigated the role of the TYRO3/Akt signaling pathway in hypoxic injury to hippocampal neurons. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that hypoxia inhibited t...In this study, we investigated the role of the TYRO3/Akt signaling pathway in hypoxic injury to hippocampal neurons. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that hypoxia inhibited the proliferation and viability of hippocampal neurons. Terminal deoxynucleotidyl transferase-mediated d UTP nick end labeling assay demonstrated that hypoxia induced neuronal apoptosis in a time-dependent manner, with a greater number of apoptotic cells with longer hypoxic exposure. Immunofluorescence labeling revealed that hypoxia suppressed TYRO3 expression. Western blot assay showed that hypoxia decreased Akt phosphorylation levels in a time-dependent manner. Taken together, these findings suggest that hypoxia inhibits the proliferation of hippocampal neurons and promotes apoptosis, and that the inhibition of the TYRO3/Akt signaling pathway plays an important role in hypoxia-induced neuronal injury.展开更多
Gentianine has been shown to have a protective effect on hippocampal CA1 neurons in rats subjected to recurrent febrile convulsion(FC).The present study sought to explore the possible mechanism of gentianine by intr...Gentianine has been shown to have a protective effect on hippocampal CA1 neurons in rats subjected to recurrent febrile convulsion(FC).The present study sought to explore the possible mechanism of gentianine by intraperitoneally injecting gentianine into rats with warm water-induced FC.The results revealed that neuronal organelle injury was slightly ameliorated in the hippocampal CA1 region.The level of glutamate was decreased,but the level of γ-aminobutyric acid was increased,as detected by ninhydrin staining.In addition,glutamate acid decarboxylase expression in hippocampal CA1 was increased,as determined by immunohistochemistry.The results demonstrated that gentianine can ameliorate FC-induced neuronal injury by enhancing glutamate acid decarboxylase activity,decreasing glutamate levels and increasing γ-aminobutyric acid levels.展开更多
BACKGROUND: Previous studies have suggested that the hippocampus is one of the neurotoxic target sites for lead. However, the molecular mechanisms of action, including the effect of lead on cell-cycle arrest, remain ...BACKGROUND: Previous studies have suggested that the hippocampus is one of the neurotoxic target sites for lead. However, the molecular mechanisms of action, including the effect of lead on cell-cycle arrest, remain poorly understood. OBJECTIVE: To investigate the effects of different lead concentrations on cell-cycle arrest, DNA damage, and cyclin D1 expression in primary cultured rat hippocampal neurons. DESIGN, TIME AND SETTING: A randomized, controlled, in vitro experiment was performed at the China Medical University between July 2008 and May 2009. MATERIALS: Antibodies specific to cyclin D1 and actin were synthesized and purified by Santa Cruz Biotechnology, USA. FACStar flow cytometer was purchased from Becton Dickinson, San Jose, California, USA. METHODS: Wistar rat hippocampal neurons were primary cultured for 7 days. Neurons in the control group were treated with 0.01 mol/L phosphate buffered saline. Neurons in the 0.2, 1.0, and 10 umol/L lead acetate groups were subjected to 0.2, 1.0, and 10 umol/L lead acetate. Subsequently hippocampal neurons in each group were cultured for 24 hours. MAIN OUTCOME MEASURES: The effects of lead on cell cycle were measured by flow cytometry, DNA damage was measured using the comet assay, and cyclin D1 expression was measured using Western blot analysis. RESULTS: Treatment of hippocampal neurons with 0.2 umol/L lead acetate did not significantly alter cell cycle phase distribution, i.e., sub-G1, S, G0/G1, G2/M, whereas treatment with 1.0 and 10 umol/L lead acetate significantly increased the percentage of S and sub-G1 phase cells (P 〈 0.05). Olive tail moment in all lead-treated groups and the percentage of DNA in the tail in 1.0 umol/L and 10 umol/L lead acetate groups were significantly greater compared with the control group (P 〈 0.05). In addition, the percentage of tail DNA was greater in the 0.2 umol/L lead acetate group compared with the control group (P 〉 0.05). Following incubation with 0.2, 1.0, and 10 umol/L lead acetate for 24 hours, cyclin D1 expression gradually decreased with exposure to increasing lead acetate concentrations (1.0-10 umol/L). CONCLUSION: Lead exposure to primary cultured rat hippocampal neurons resulted in dose-dependently disturbed cellular homeostasis, including DNA damage, reduced cyclin D1 expression, and stagnation of cell-cycle progression.展开更多
Hippocampal neurons were treated by thrombin and thrombin receptor activatingpeptides (TRAP). Cell survival rate was decreased in a dose-dependent manner by MTT assay. Thenumbers of apoptotic cell and apoptotic rate o...Hippocampal neurons were treated by thrombin and thrombin receptor activatingpeptides (TRAP). Cell survival rate was decreased in a dose-dependent manner by MTT assay. Thenumbers of apoptotic cell and apoptotic rate of hippocampal neurons treated bydifferentconcentrations of thrombin were increased in a dose-dependent manner by terminal deoxynucleotidyltransferase (TdT) mediated dUTP-biotin nick end-labeling (TUNED method and Flow Cytometry. When theconcentration of thrombin is 40 U/mL, TUNEL positive cells and apoptotic rate of hippocampal neuronsreached peak value, were 27. 3 +- 4. 0 and (29. 333 +- 4. 633 ) % , respectively.Immunocytochemistry assay show that Bcl-2 protein expression was down- regulated and Bax proteinexpression was up-regulated with the concentration of thrombin increased. TRAP can mimic the effectof thrombin to induce apoptosis on hippocampal neurons. These data demonstrated that thrombininduced hippocampal neuron apoptosis in a dose-dependent manner through activatingprotease-acti-vated protein-1 (PAR-1). The change in expression of Bcl-2 and Bax was related withthe effect of high concentration thrombin induced apoptosis on hippocampal neurons.展开更多
Septic encephalopathy is a frequent complication of sepsis,but there are few studies examining the role of micro RNAs(mi Rs) in its pathogenesis.In this study,a mi R-219 mimic was transfected into rat hippocampal ne...Septic encephalopathy is a frequent complication of sepsis,but there are few studies examining the role of micro RNAs(mi Rs) in its pathogenesis.In this study,a mi R-219 mimic was transfected into rat hippocampal neurons to model mi R-219 overexpression.A protective effect of mi R-219 was observed for glutamate-induced neurotoxicity of rat hippocampal neurons,and an underlying mechanism involving calmodulin-dependent protein kinase II γ(Ca MKIIγ) was demonstrated.mi R-219 and Ca MKIIγ m RNA expression induced by glutamate in hippocampal neurons was determined by quantitative real-time reverse transcription-polymerase chain reaction(q RT-PCR).After neurons were transfected with mi R-219 mimic,effects on cell viability and apoptosis were measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide(MTT) assay and flow cytometry.In addition,a luciferase reporter gene system was used to confirm Ca MKIIγ as a target gene of mi R-219.Western blot assay and rescue experiments were also utilized to detect Ca MKIIγ expression and further verify that mi R-219 in hippocampal neurons exerted its effect through regulation of Ca MKIIγ.MTT assay and q RT-PCR results revealed obvious decreases in cell viability and mi R-219 expression after glutamate stimulation,while Ca MKIIγ m RNA expression was increased.MTT,flow cytometry,and caspase-3 activity assays showed that mi R-219 overexpression could elevate glutamate-induced cell viability,and reduce cell apoptosis and caspase-3 activity.Moreover,luciferase Ca MKIIγ-reporter activity was remarkably decreased by co-transfection with mi R-219 mimic,and the results of a rescue experiment showed that Ca MKIIγ overexpression could reverse the biological effects of mi R-219.Collectively,these findings verify that mi R-219 expression was decreased in glutamate-induced neurons,Ca MKIIγ was a target gene of mi R-219,and mi R-219 alleviated glutamate-induced neuronal excitotoxicity by negatively controlling Ca MKIIγ expression.展开更多
Summary: To investigate the exact mechanism of epileptogenesis induced by coriaria lactone (CL), the effect of CL on NMDA receptor mediated current (IAsp) in rat hippocampal CA1 neu- rons was investigated by using ny...Summary: To investigate the exact mechanism of epileptogenesis induced by coriaria lactone (CL), the effect of CL on NMDA receptor mediated current (IAsp) in rat hippocampal CA1 neu- rons was investigated by using nystatin perforated whole-cell patch clamp. 10-6-10-4 mol/L Asp acted on NMDA receptors and elicited an inward current (IAsp) at a holding potential (VH) of -40 mV in presence of 10-6 mol/L glycine and absence of Mg2+ extracellularly. CL enhanced NMDA receptor mediated current induced by Asp, but had no effect on threshold concentration, EC50, Hill coefficient as well as maximal-effect concentration and reversal potential of IAsp. The effect had no relationship with holding potential. These results showed that CL could enhance NMDA receptor mediated current to increase [Ca2+]i of neurons by acting on Gly site, thereby inducing epilepsy.展开更多
s Oxidative stress is involved in the progression of neurodegenerative diseases.Previous evidences showed that plasma-logens could improve neurodegenerative diseases.In this study,we investigated the function of phosp...s Oxidative stress is involved in the progression of neurodegenerative diseases.Previous evidences showed that plasma-logens could improve neurodegenerative diseases.In this study,we investigated the function of phosphoethanolamine plasmalogens enriched with EPA(EPA-pPE)and phosphatidylethanolamine enriched with EPA(EPA-PE)on oxidative damage prevention after hy-drogen peroxide(H2O2)and tert-butylhydroperoxide(t-BHP)challenge in primary hippocampal neurons.Results showed that neurons pretreated with EPA-pPE and EPA-PE demonstrated the ability to alleviate oxidative damage,which was proved by the in-creased cell viability.Moreover,the shape and number of neurons were more similar to those of the control group.Antioxidant acti-vity,apoptosis,as well as TrkB/ERK/CREB signaling pathway were investigated to explore the mechanisms.The results suggested that EPA-PE was superior to EPA-pPE in regulating mitochondrial apoptosis.EPA-pPE was more prominent than EPA-PE in upre-gulating TrkB/ERK/CREB signaling pathway.Phospholipids with EPA exerted neuroprotective effects via inhibiting oxidative stress,suppressing apoptosis,and regulating TrkB/ERK/CREB signaling pathway.Therefore,the results provide a scientific basis for utili-zation of phospholipids enriched with EPA on the treatment of neurodegenerative disease.展开更多
Objective To explore the protective effects and mechanism of Zuogui Jiangtang Jieyu Formula(左归降糖解郁方,ZGJTJYF)on hippocampal neurons in rats of diabetes complicated with depression(DD)via the TRP/KYN metabolic pa...Objective To explore the protective effects and mechanism of Zuogui Jiangtang Jieyu Formula(左归降糖解郁方,ZGJTJYF)on hippocampal neurons in rats of diabetes complicated with depression(DD)via the TRP/KYN metabolic pathway.Methods(i)In vivo experiments:60 specified pathogen free(SPF)grade male Sprague-Dawley(SD)rats were randomly divided into six groups with 10 rats in each groups:control,DD model,positive(1.8 mg/kg fluoxetine+0.18 g/kg metformin),high-dose ZGJTJYF(ZGJTJYFH,40.500 g/kg ZGJTJYF),middle-dose ZGJTJYF(ZGJTJYF-M,20.250 g/kg ZGJTJYF),and lowdose ZGJTJYF(ZGJTJYF-L,10.125 g/kg ZGJTJYF)groups.Except for the control group,other groups were established DD model by high-fat emulsion intake with single tail vein streptozotocin(STZ)and four weeks of chronic unpredictable mild stress(CUMS).All drug administration groups were treated by gavage during CUMS modeling,and the control and model groups were given equal amount of distilled water.After four weeks,the serum levels of blood glucose and glycosylated hemoglobin were measured to determine the hypoglycemic effect of ZGJTJYF.Moreover,the open field test and Morris water maze test were performed to evaluate the antidepressant effect of ZGJTJYF.Changes in 5-hydroxytryptamine(5-HT)level were detected via high-performance liquid chromatography with electrochemical detection(HPLC-ECD);the levels of tryptophan(TRP),kynurenine(KYN),and indoleamine 2,3-dioxygenase(IDO)in the hippocampus were detected using enzyme-linked immunosorbent assay(ELISA);the protein expression levels of synaptophysin(SYN)and postsynaptic density material-95(PSD-95)were detected via immunohistochemistry(IHC);and the protein expression levels of N-methyl-D-aspartate receptor(NR)2 A and NR2 B were detected using Western blot.(ii)In vitro experiments:five SPF grade SD pregnant rats(E16–18)were used to obtain primary hippocampal neurons(Ne),six SD new-born rats were used to collected primary astrocytes(As)and microglia(MG),and to establish a Ne-As-MG co-culture system.All co-culture systems were divided into six groups:control(PBS),model[150 mmol/L glucose+200μmol/L corticosterone(G&P)+PBS],blank(G&P+blank serum),positive(G&P+positive drug-containing serum),ZGJTJYF(G&P+ZGJTJYF serum),and 1-methyl-D-tryptophan(1-MT,IDO inhibitor)(G&P+1-MT)groups.After 18 h of intervention by corresponding treatment,immunofluorescence was used to analyze the protein expression levels of SYN,PSD-95,NR2 A,and NR2 B;ELISA was performed to measure the levels of interleukin(IL)-1β,IL-6,tumor necrosis factor(TNF)-α,and TRP/KYN metabolic pathway-related factors[TRP,KYN,kynurenine acid(KYNA),quinolinic acid(QUIN)].Results(i)In vivo experimental results showed that ZGJTJYF-M and ZGJTJYF-L significantly improved the elevated blood glucose state of DD rats(P<0.01 and P<0.05,respectively);ZGJTJYF-H,ZGJTJYF-M,and ZGJTJYF-L increased their autonomous activity,learning,and memory ability(P<0.01,P<0.01,and P<0.05,respectively).Moreover,the levels of 5-HT and TRP were significantly increased(P<0.01),and the levels of KYN and IDO were significantly decreased in the hippocampus(P<0.01)of rats after ZGJTJYF-M treatment.The protein expression levels of SYN and PSD-95 were significantly upregulated in hippocampal neurons(P<0.01),while the abnormal activation of NR2A and NR2B was markedly inhibited in hippocampus(P<0.05)of rats after ZGJTJYF-M treatment.(ii)In vitro experimental results showed that ZGJTJYF-containing serum significantly increased the protein expression levels of SYN and PSD-95 in hippocampal neurons(P<0.01),decreased the levels of IL-1β(P<0.01),IL-6(P<0.05),TNF-α(P<0.01),IDO(P<0.05),KYN(P<0.05),and QUIN(P<0.01),and increased the levels of TRP and KYNA(P<0.01)in the simulated DD state.ZGJTJYF also had an significantly inhibitory effect on the abnormal activation of NR2A and NR2B in neurons(P<0.05)in a stimulated DD state.Conclusion ZGJTJYF can effectively improve 5-HT deficiency in the hippocampus of rats by inhibiting IDO expression and regulating the TRP/KYN metabolic pathway,and it has a favorable protective effect on hippocampal neuron injury caused by DD.Therefore,ZGJTJYF is an effective potential therapeutic drug for the prevention and treatment of DD.展开更多
Oxidative stress is one of the main causes of neurodegenerative diseases such as Alzheimer disease(AD).Our previous studies have shown that artemisinin,a anti-malaria Chinese medicine,with neuroprotective effect,howev...Oxidative stress is one of the main causes of neurodegenerative diseases such as Alzheimer disease(AD).Our previous studies have shown that artemisinin,a anti-malaria Chinese medicine,with neuroprotective effect,however,the antioxidative effect of artemisinin and its potential mechanism remain to be elucidated.In the present study,the protective effect and the underlying mechanism of artemisinin against injury of hydrogen peroxide(H_2O_2) in SH-SY5Y and hippocampal neurons were studied.Our results show that artemisinin protected SH-SY5Y and hippocampal neuronal cells from H_2O_2-induced cell death at clinically relevant concentrations in a concentration-dependent manner.Further studies showed that artemisinin significantly reduced cell death caused by H_2O_2 by restoring nuclear morphology,abnormal changes in intracellular ROS,activation of caspase 3,lactate dehydrogenase release and mitochondrial membrane potential.Hoechst staining and flow cytometry showed that artemisinin significantly reduced the apoptosis of SH-SY5Y cells exposed to H_2O_2.Western blotting analysis showed that artemisinin stimulated the phosphorylation and activation of AMP-activated protein kinase(AMPK) in SH-SY5Y cells in a time and concentration-dependent manner,whereas the application of AMPK inhibitor Compound C or decrease in expression of AMPKα with shRNA specific for AMPKα blocked the protective effect of artemisinin.Similar results were obtained in primary cultured hippocampal neurons.Taken together,these results indicate that artemisinin can protect neuronal cells from oxidative damage,at least in part through the activation of AMPK.Because artemisinin is relatively inexpensive and has few side effects,our findings support the role of artemisinin as a potential therapeutic agent for neurodegenerative diseases.展开更多
Epilepsy can lead to the changes in neurons residing in the dentate gyrus. The present study aimed to observe the cell dividing features following epilepsy in adult rat hippocampi, and to study difference in cell prol...Epilepsy can lead to the changes in neurons residing in the dentate gyrus. The present study aimed to observe the cell dividing features following epilepsy in adult rat hippocampi, and to study difference in cell proliferation between adult rats with common epilepsy and intractable epilepsy.Adult, male, Sprague Dawley rats ware randomly divided into control (n = 8, treatment with normal saline) and three expenmental groups: common epilepsy (n = 33), intractable epilepsy (n = 11), and drug-responsive (n = 25). Pilocarpine (15 mg/kg) was intrapentoneally administered to establish epilepsy in the three experimental groups. Rats that developed epilepsy were treated with chloral hydrate. Rats that did not exhibit spontaneous seizures were enrolled in the common epilepsy group, and rats with spontaneous seizure were included in the spontaneous seizure group. At 6 hours after epileptic attack termination, rats ware intraperitoneally injected with bromodeoxyuridine (BrdU; 50 mg/kg), an optimal marker forlabeling cell proliferation in vivo, four times.Immunohistochemistry results at 48 hours after BrdU injection indicated that the number of BrdU-positive cells was the highest in the common epilepsy group, followed by the control group,and lastly the intractable group (P 〈 0.01). In addition, the number of BrdU-positive cells in the common epilepsy group was similar to the drug-responsive group. The present findings demonstrated that intractable epilepsy led to decreased hippocampal neurons in adult rats when compared to common epilepsy.展开更多
Summary: To explore the effect of different concentrations of corticosterone (CORT) on primary cultured hippocampal neurons and their Ca~2+ /CaMKⅡ expression and possible mechanism, the changes of hippocampal neurons...Summary: To explore the effect of different concentrations of corticosterone (CORT) on primary cultured hippocampal neurons and their Ca~2+ /CaMKⅡ expression and possible mechanism, the changes of hippocampal neurons were observed in terms of morphology, activity of cells, cell death, concentrations of cytosolic free calcium, and the expression of CaMKⅡ by using MTT assay, flow cytometry, fluorescent labeling of Fura-2/AM and Western blotting after 10~-7 , 10~-6 and 10~-5 mol/L of CORT was added to culture medium, The evident effect of 10~-6 and 10~-5 mol/L of CORT on the morphology of hippocampal neuron was found. Compared with control neurons, the activity of the cells was markedly decreased and [Ca~2+ ]_i increased in the neurons treated with 10~-6 and 10~-5 mol/L of CORT, but no change was observed in the neuron treated with 10~-7 mol/L of CORT. The death was either by way of apoptosis or necrosis in the cells treated with 10~-6 and 10~-5 mol/L of CORT respectively. The correlation analysis showed that a reverse correlation existed between [Ca~2+ ]_i and the expression of CaMKⅡ. Either apoptosis or necrosis occurs in the hippocampal neurons treated with CORT. The increased hippocampal [Ca~2+ ]_i is both the result of CORT impairing the hippocampal neurons and the cause of the apoptosis of hippocampal neurons and the decreased CaMKⅡ expression.展开更多
BACKGROUND: The pharmacological action of opioid drugs is related to signal transduction of inhibitory guanine nucleotide binding protein. OBJECTIVE: To quantitatively and qualitatively analyze the influence of morp...BACKGROUND: The pharmacological action of opioid drugs is related to signal transduction of inhibitory guanine nucleotide binding protein. OBJECTIVE: To quantitatively and qualitatively analyze the influence of morphine on levels of type Ⅱ inhibitory guanine nucleotide binding protein (Gi2 protein) in primary cultured hippocampal neurons at different time points. DESIGN, TIME AND SETTING: A randomized controlled study, which was performed at the Department of Neurobiology, Changzheng Hospital, Second Military Medical University of Chinese PLA between September 2002 and March 2004. MATERIALS: Cerebral hippocampal neurons were obtained from newborn SD rats at 1 2 days of age. Biotin-antibody Ⅱ-avidin fluorescein isothiocyanate (Avidin-FITC) was purchased from Sigma Company (USA) and the Gi2 protein polyclonal antibody from Santa Cruz Biochemistry Company (USA). METHODS: Seven days after culture, mature hippocampal neurons were randomly divided into six groups: 4-, 8-, 16-, 24-, and 48-hour morphine groups, and a blank control group. Neurons in the morphine groups received morphine (10 μ mol/L), which could cause alterations of G-protein mRNA and cAMP expression in the prefrontal cortex. Neurons in the blank control group were given the same volume of saline. MAIN OUTCOME MEASURES: Gi2 protein levels were detected by an immunofluorescence technique, and were analyzed by the image analytic system with the use of green fluorescence intensity. RESULTS: Gi2 protein levels in hippocampal neurons gradually decreased in the 4-, 8-, 16-, 24-, and 48-hour morphine groups. In particular, Gi2 protein levels in the 16-, 24-, and 48-hour morphine groups were significantly lower than that in the blank control group (P 〈 0.05 0.01). CONCLUSION: Morphine may decrease Gi2 protein level in primary hippocampal neurons, and the decreasing trend is positively related to morphine-induced time.展开更多
Objective: To study the rapid effect of glucocorticoids (GCs) on NMDA receptor activity in hippocampal neurons in stress and to elucidate its underlying probable membrane mechanisms. Methods: Whole-cell patch-clamp re...Objective: To study the rapid effect of glucocorticoids (GCs) on NMDA receptor activity in hippocampal neurons in stress and to elucidate its underlying probable membrane mechanisms. Methods: Whole-cell patch-clamp recording was used to assess the effect of stress concentration corticosterone (B) on the responses of cultured hippocampal neurons to glutamate and NMDA (N-methy-D-asparatic acid). To make clear the target of B, intracellular dialysis of B(10 μmol/L)through patch pipette and extracellular application of bovine serum albumin-conjugated corticosterone(B-BSA, 10 μmol/L)were carried out to observe their influence on peak amplitude of NMDA-evoked current. Results: B had a rapid, reversible and inhibitory effect on peak amplitude of GLU- or NMDA-evoked current in cultured hippocampal neurons. Furthermore, B-BSA had the inhibitory effect on INMDA as that of B, but intracellularly dialyzed B had no significant effect on I NMDA. Conclusion: These results suggest that under the condition of stress, GCs may rapidly, negatively regulate excitatory synaptic receptors-glutamate receptors (GluRs), especially NMDA receptor (NMDAR) in central nervous system, which is mediated by rapid membrane mechanisms, but not by classical, genomic mechanisms.展开更多
Excess extracellular glutamate leads to excitotoxicity,which induces neuronal death through the overactivation of N-methyl-D-aspartate receptors(NMDARs).Excitotoxicity is thought to be closely related to various acute...Excess extracellular glutamate leads to excitotoxicity,which induces neuronal death through the overactivation of N-methyl-D-aspartate receptors(NMDARs).Excitotoxicity is thought to be closely related to various acute and chronic neurological disorders,such as stroke and Alzheimer’s disease.Polygalasaponin F(PGSF)is a triterpenoid saponin monomer that can be isolated from Polygala japonica,and has been reported to protect cells against apoptosis.To investigate the mechanisms underlying the neuroprotective effects of PGSF against glutamateinduced cytotoxicity,PGSF-pretreated hippocampal neurons were exposed to glutamate for 24 hours.The results demonstrated that PGSF inhibited glutamate-induced hippocampal neuron death in a concentration-dependent manner and reduced glutamate-induced Ca^(2+)overload in the cultured neurons.In addition,PGSF partially blocked the excess activity of NMDARs,inhibited both the downregulation of NMDAR subunit NR2A expression and the upregulation of NMDAR subunit NR2B expression,and upregulated the expression of phosphorylated cyclic adenosine monophosphate-responsive element-binding protein and brain-derived neurotrophic factor.These findings suggest that PGSF protects cultured hippocampal neurons against glutamate-induced cytotoxicity by regulating NMDARs.The study was approved by the Institutional Animal Care Committee of Nanchang University(approval No.2017-0006)on December 29,2017.展开更多
Objective: To establish a simple, effective and high-purity primary culture method for fetal rat hippocampalneurons. Methods: Wistar rats of gestational age 18 days were taken and the brain tissue was separated unde...Objective: To establish a simple, effective and high-purity primary culture method for fetal rat hippocampalneurons. Methods: Wistar rats of gestational age 18 days were taken and the brain tissue was separated under themicroscope. Single neuronal cells were obtained by digestion with Brain Dissociation Kit, and then were seeded incell plates to observe the basic morphologic structure after 24h, 3d, and 5d. Immunofluorescence of microtubuleassociated protein 2 was applied to assess cell purity of the culture. Results: The hippocampal neurons obtained inthis culture method are in good condition and grow vigorously. On the 7th day after culture, the purity of neuronswas up to 99.62%. Conclusion: The method is simple and effective for obtaining the high-purity and stableneurons.展开更多
基金supported by the National Research Foundation (NRF)of Korea Grant funded by the Korean Government (NRF-2022R1A2C100402212RS-2023-00219517)。
文摘Structural plasticity is critical for the functional diversity of neurons in the brain.Experimental autoimmune encephalomyelitis(EAE)is the most commonly used model for multiple sclerosis(MS),successfully mimicking its key pathological features(inflammation,demyelination,axonal loss,and gliosis)and clinical symptoms(motor and non-motordysfunctions).Recentstudieshave demonstrated the importance of synaptic plasticity in EAE pathogenesis.In the present study,we investigated the features of behavioral alteration and hippocampal structural plasticity in EAE-affected mice in the early phase(11 days post-immunization,DPI)and chronic phase(28DPI).EAE-affected mice exhibited hippocampus-related behavioral dysfunction in the open field test during both early and chronic phases.Dendritic complexity was largely affected in the cornu ammonis 1(CA1)and CA3 apical and dentate gyrus(DG)subregions of the hippocampus during the chronic phase,while this effect was only noted in the CA1 apical subregion in the early phase.Moreover,dendritic spine density was reduced in the hippocampal CA1 and CA3 apical/basal and DG subregions in the early phase of EAE,but only reduced in the DG subregion during the chronic phase.Furthermore,mRNA levels of proinflammatory cytokines(Il1β,Tnfα,and Ifnγ)and glial cell markers(Gfap and Cd68)were significantly increased,whereas the expression of activity-regulated cytoskeletonassociated protein(ARC)was reduced during the chronic phase.Similarly,exposure to the aforementioned cytokines in primary cultures of hippocampal neurons reduced dendritic complexity and ARC expression.Primary cultures of hippocampal neurons also showed significantly reduced extracellular signal-regulated kinase(ERK)phosphorylation upon treatment with proinflammatory cytokines.Collectively,these results suggest that autoimmune neuroinflammation alters structural plasticity in the hippocampus,possibly through the ERK-ARC pathway,indicating that this alteration may be associated with hippocampal dysfunctions in EAE.
基金financially supported by the Science and Technology Commission Foundation of Zhangjiakou City,No.1021098Dthe Medical Scientific Research Project of Health Bureau of Hebei Province,No.20100144+2 种基金the Natural Science Foundation of Hebei Province,No.H2012405016the Innovative Talents Project of Hebei North University,No.CXRC1325the Major Projects of Hebei North University,No.ZD201310
文摘Previous studies have shown that chrysophanol protects against learning and memory impairments in lead-exposed adult mice. In the present study, we investigated whether chrysophanol can alleviate learning and memory dysfunction and hippocampal neuronal injury in lead-exposed neonatal mice. At the end of lactation, chrysophanol(0.1, 1.0, 10.0 mg/kg) was administered to the neonatal mice by intraperitoneal injection for 15 days. Chrysophanol significantly alleviated injury to hippocampal neurons and improved learning and memory abilities in the lead-poisoned neonatal mice. Chrysophanol also significantly decreased lead content in blood, brain, heart, spleen, liver and kidney in the lead-exposed neonatal mice. The levels of malondialdehyde in the brain, liver and kidney were significantly reduced, and superoxide dismutase and glutathione peroxidase activities were significantly increased after chrysophanol treatment. Collectively, these findings indicate that chrysophanol can significantly reduce damage to hippocampal neurons in lead-exposed neonatal mice.
基金funded by the National Natural Science Foundation of China General [Grant No.81172620,No.81402629,and No.61401497]Innovation Foundation of Academy of Military Medical Sciences [2017CXJJ17,2015CXJJ06]
文摘Objective To detect the effects of microwave on calcium levels in primary hippocampal neurons and primary cardiomyocytes by the real-time microwave exposure combined with laser scanning confocal microscopy. Methods The primary hippocampal neurons and primary cardiomyocytes were cultured and labeled with probes, including Fluo-4 AM, Mag-Fluo-AM, and Rhod-2, to reflect the levels of whole calcium [Ca], endoplasmic reticulum calcium [Ca]ER, and mitochondrial calcium [Ca]MIT, respectively. Then, the cells were exposed to a pulsed microwave of 2.856 GHz with specific absorption rate(SAR) values of 0, 4, and 40 W/kg for 6 min to observe the changes in calcium levels. Results The results showed that the 4 and 40 W/kg microwave radiation caused a significant decrease in the levels of [Ca], [Ca]ER, and [Ca]MIT in primary hippocampal neurons. In the primary cardiomyocytes, only the 40 W/kg microwave radiation caused the decrease in the levels of [Ca], [Ca]ER, and [Ca]MIT. Primary hippocampal neurons were more sensitive to microwave exposure than primary cardiomyocytes. The mitochondria were more sensitive to microwave exposure than the endoplasmic reticulum. Conclusion The calcium efflux was occurred during microwave exposure in primary hippocampal neurons and primary cardiomyocytes. Additionally, neurons and mitochondria were sensitive cells and organelle respectively.
基金financially supported by the National Program on Key Basic Research Project of China(973 Program),No.2010CB945600,2011CB965100the National Natural Science Foundation of China,No.81070987,30971531,81371213a grant from the International Science & Technology Collaboration Program,No.2011DF30010
文摘Ginsenoside Rg1(Rg1) has anti-aging and anti-neurodegenerative effects. However, the mechanisms underlying these actions remain unclear. The aim of the present study was to determine whether Rg1 affects hippocampal survival and neurite outgrowth in vitro after exposure to amyloid-beta peptide fragment 25–35(Aβ_(25–35)), and to explore whether the extracellular signal-regulated kinase(ERK) and Akt signaling pathways are involved in these biological processes. We cultured hippocampal neurons from newborn rats for 24 hours, then added Rg1 to the medium for another 24 hours, with or without pharmacological inhibitors of the mitogen-activated protein kinase(MAPK) family or Akt signaling pathways for a further 24 hours. We then immunostained the neurons for growth associated protein-43, and measured neurite length. In a separate experiment, we exposed cultured hippocampal neurons to Aβ_(25–35) for 30 minutes, before adding Rg1 for 48 hours, with or without Akt or MAPK inhibitors, and assessed neuronal survival using Hoechst 33258 staining, and phosphorylation of ERK1/2 and Akt by western blot analysis. Rg1 induced neurite outgrowth, and this effect was blocked by API-2(Akt inhibitor) and PD98059(MAPK/ERK kinase inhibitor), but not by SP600125 or SB203580(inhibitors of c-Jun N-terminal kinase and p38 MAPK, respectively). Consistent with this effect, Rg1 upregulated the phosphorylation of Akt and ERK1/2; these effects were reversed by API-2 and PD98059, respectively. In addition, Rg1 significantly reversed Aβ_(25–35)-induced apoptosis; this effect was blocked by API-2 and PD98059, but not by SP600125 or SB203580. Finally, Rg1 significantly reversed the Aβ_(25–35)-induced decrease in Akt and ERK1/2 phosphorylation, but API-2 prevented this reversal. Our results indicate that Rg1 enhances neurite outgrowth and protects against Aβ_(25–35)-induced damage, and that its mechanism may involve the activation of Akt and ERK1/2 signaling.
基金supported by the National Natural Science Foundation of China,No.81101159the Natural Science Foundation of Jiangsu Province of China,No.BK20151268
文摘Hypoxic injuries during fetal distress have been shown to cause reduced expression of micro RNA-27a(mi R-27a),which regulates sensitivity of cortical neurons to apoptosis.We hypothesized that miR-27 a overexpression attenuates hypoxia- and ischemia-induced neuronal apoptosis by regulating FOXO1,an important transcription factor for regulating the oxidative stress response.miR-27 a mimic was transfected into hippocampal neurons to overexpress miR-27 a.Results showed increased hippocampal neuronal viability and decreased caspase-3 expression.The luciferase reporter gene system demonstrated that mi R-27 a directly binded to FOXO1 3′UTR in hippocampal neurons and inhibited FOXO1 expression,suggesting that FOXO1 was the target gene for mi R-27 a.These findings confirm that mi R-27 a protects hippocampal neurons against oxygen-glucose deprivation-induced injuries.The mechanism might be mediated by modulation of FOXO1 and apoptosis-related gene caspase-3 expression.
基金supported by the National Natural Science Foundation of China,No.81001541the Natural Science Foundation of Fujian Province of China,No.2013J01331
文摘In this study, we investigated the role of the TYRO3/Akt signaling pathway in hypoxic injury to hippocampal neurons. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that hypoxia inhibited the proliferation and viability of hippocampal neurons. Terminal deoxynucleotidyl transferase-mediated d UTP nick end labeling assay demonstrated that hypoxia induced neuronal apoptosis in a time-dependent manner, with a greater number of apoptotic cells with longer hypoxic exposure. Immunofluorescence labeling revealed that hypoxia suppressed TYRO3 expression. Western blot assay showed that hypoxia decreased Akt phosphorylation levels in a time-dependent manner. Taken together, these findings suggest that hypoxia inhibits the proliferation of hippocampal neurons and promotes apoptosis, and that the inhibition of the TYRO3/Akt signaling pathway plays an important role in hypoxia-induced neuronal injury.
基金the Key Project of Technology of Ministry of Education, No. 2007029
文摘Gentianine has been shown to have a protective effect on hippocampal CA1 neurons in rats subjected to recurrent febrile convulsion(FC).The present study sought to explore the possible mechanism of gentianine by intraperitoneally injecting gentianine into rats with warm water-induced FC.The results revealed that neuronal organelle injury was slightly ameliorated in the hippocampal CA1 region.The level of glutamate was decreased,but the level of γ-aminobutyric acid was increased,as detected by ninhydrin staining.In addition,glutamate acid decarboxylase expression in hippocampal CA1 was increased,as determined by immunohistochemistry.The results demonstrated that gentianine can ameliorate FC-induced neuronal injury by enhancing glutamate acid decarboxylase activity,decreasing glutamate levels and increasing γ-aminobutyric acid levels.
基金the National Natural Science Foundation of China, No. 39970651
文摘BACKGROUND: Previous studies have suggested that the hippocampus is one of the neurotoxic target sites for lead. However, the molecular mechanisms of action, including the effect of lead on cell-cycle arrest, remain poorly understood. OBJECTIVE: To investigate the effects of different lead concentrations on cell-cycle arrest, DNA damage, and cyclin D1 expression in primary cultured rat hippocampal neurons. DESIGN, TIME AND SETTING: A randomized, controlled, in vitro experiment was performed at the China Medical University between July 2008 and May 2009. MATERIALS: Antibodies specific to cyclin D1 and actin were synthesized and purified by Santa Cruz Biotechnology, USA. FACStar flow cytometer was purchased from Becton Dickinson, San Jose, California, USA. METHODS: Wistar rat hippocampal neurons were primary cultured for 7 days. Neurons in the control group were treated with 0.01 mol/L phosphate buffered saline. Neurons in the 0.2, 1.0, and 10 umol/L lead acetate groups were subjected to 0.2, 1.0, and 10 umol/L lead acetate. Subsequently hippocampal neurons in each group were cultured for 24 hours. MAIN OUTCOME MEASURES: The effects of lead on cell cycle were measured by flow cytometry, DNA damage was measured using the comet assay, and cyclin D1 expression was measured using Western blot analysis. RESULTS: Treatment of hippocampal neurons with 0.2 umol/L lead acetate did not significantly alter cell cycle phase distribution, i.e., sub-G1, S, G0/G1, G2/M, whereas treatment with 1.0 and 10 umol/L lead acetate significantly increased the percentage of S and sub-G1 phase cells (P 〈 0.05). Olive tail moment in all lead-treated groups and the percentage of DNA in the tail in 1.0 umol/L and 10 umol/L lead acetate groups were significantly greater compared with the control group (P 〈 0.05). In addition, the percentage of tail DNA was greater in the 0.2 umol/L lead acetate group compared with the control group (P 〉 0.05). Following incubation with 0.2, 1.0, and 10 umol/L lead acetate for 24 hours, cyclin D1 expression gradually decreased with exposure to increasing lead acetate concentrations (1.0-10 umol/L). CONCLUSION: Lead exposure to primary cultured rat hippocampal neurons resulted in dose-dependently disturbed cellular homeostasis, including DNA damage, reduced cyclin D1 expression, and stagnation of cell-cycle progression.
文摘Hippocampal neurons were treated by thrombin and thrombin receptor activatingpeptides (TRAP). Cell survival rate was decreased in a dose-dependent manner by MTT assay. Thenumbers of apoptotic cell and apoptotic rate of hippocampal neurons treated bydifferentconcentrations of thrombin were increased in a dose-dependent manner by terminal deoxynucleotidyltransferase (TdT) mediated dUTP-biotin nick end-labeling (TUNED method and Flow Cytometry. When theconcentration of thrombin is 40 U/mL, TUNEL positive cells and apoptotic rate of hippocampal neuronsreached peak value, were 27. 3 +- 4. 0 and (29. 333 +- 4. 633 ) % , respectively.Immunocytochemistry assay show that Bcl-2 protein expression was down- regulated and Bax proteinexpression was up-regulated with the concentration of thrombin increased. TRAP can mimic the effectof thrombin to induce apoptosis on hippocampal neurons. These data demonstrated that thrombininduced hippocampal neuron apoptosis in a dose-dependent manner through activatingprotease-acti-vated protein-1 (PAR-1). The change in expression of Bcl-2 and Bax was related withthe effect of high concentration thrombin induced apoptosis on hippocampal neurons.
基金supported by the National Natural Science Foundation of China,No.81101159the Natural Science Foundation of Jiangsu Province of China,No.BK20151268
文摘Septic encephalopathy is a frequent complication of sepsis,but there are few studies examining the role of micro RNAs(mi Rs) in its pathogenesis.In this study,a mi R-219 mimic was transfected into rat hippocampal neurons to model mi R-219 overexpression.A protective effect of mi R-219 was observed for glutamate-induced neurotoxicity of rat hippocampal neurons,and an underlying mechanism involving calmodulin-dependent protein kinase II γ(Ca MKIIγ) was demonstrated.mi R-219 and Ca MKIIγ m RNA expression induced by glutamate in hippocampal neurons was determined by quantitative real-time reverse transcription-polymerase chain reaction(q RT-PCR).After neurons were transfected with mi R-219 mimic,effects on cell viability and apoptosis were measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide(MTT) assay and flow cytometry.In addition,a luciferase reporter gene system was used to confirm Ca MKIIγ as a target gene of mi R-219.Western blot assay and rescue experiments were also utilized to detect Ca MKIIγ expression and further verify that mi R-219 in hippocampal neurons exerted its effect through regulation of Ca MKIIγ.MTT assay and q RT-PCR results revealed obvious decreases in cell viability and mi R-219 expression after glutamate stimulation,while Ca MKIIγ m RNA expression was increased.MTT,flow cytometry,and caspase-3 activity assays showed that mi R-219 overexpression could elevate glutamate-induced cell viability,and reduce cell apoptosis and caspase-3 activity.Moreover,luciferase Ca MKIIγ-reporter activity was remarkably decreased by co-transfection with mi R-219 mimic,and the results of a rescue experiment showed that Ca MKIIγ overexpression could reverse the biological effects of mi R-219.Collectively,these findings verify that mi R-219 expression was decreased in glutamate-induced neurons,Ca MKIIγ was a target gene of mi R-219,and mi R-219 alleviated glutamate-induced neuronal excitotoxicity by negatively controlling Ca MKIIγ expression.
基金This project was supported by a grant from the National Natural Science Foundation of China !(No. 39330210).
文摘Summary: To investigate the exact mechanism of epileptogenesis induced by coriaria lactone (CL), the effect of CL on NMDA receptor mediated current (IAsp) in rat hippocampal CA1 neu- rons was investigated by using nystatin perforated whole-cell patch clamp. 10-6-10-4 mol/L Asp acted on NMDA receptors and elicited an inward current (IAsp) at a holding potential (VH) of -40 mV in presence of 10-6 mol/L glycine and absence of Mg2+ extracellularly. CL enhanced NMDA receptor mediated current induced by Asp, but had no effect on threshold concentration, EC50, Hill coefficient as well as maximal-effect concentration and reversal potential of IAsp. The effect had no relationship with holding potential. These results showed that CL could enhance NMDA receptor mediated current to increase [Ca2+]i of neurons by acting on Gly site, thereby inducing epilepsy.
基金This work was supported by the National Natural Science Foundation of China(No.31901688).
文摘s Oxidative stress is involved in the progression of neurodegenerative diseases.Previous evidences showed that plasma-logens could improve neurodegenerative diseases.In this study,we investigated the function of phosphoethanolamine plasmalogens enriched with EPA(EPA-pPE)and phosphatidylethanolamine enriched with EPA(EPA-PE)on oxidative damage prevention after hy-drogen peroxide(H2O2)and tert-butylhydroperoxide(t-BHP)challenge in primary hippocampal neurons.Results showed that neurons pretreated with EPA-pPE and EPA-PE demonstrated the ability to alleviate oxidative damage,which was proved by the in-creased cell viability.Moreover,the shape and number of neurons were more similar to those of the control group.Antioxidant acti-vity,apoptosis,as well as TrkB/ERK/CREB signaling pathway were investigated to explore the mechanisms.The results suggested that EPA-PE was superior to EPA-pPE in regulating mitochondrial apoptosis.EPA-pPE was more prominent than EPA-PE in upre-gulating TrkB/ERK/CREB signaling pathway.Phospholipids with EPA exerted neuroprotective effects via inhibiting oxidative stress,suppressing apoptosis,and regulating TrkB/ERK/CREB signaling pathway.Therefore,the results provide a scientific basis for utili-zation of phospholipids enriched with EPA on the treatment of neurodegenerative disease.
基金National Natural Science Foundation of China(81874464and 82104793)the Scientific Research Project of Education Department of Hunan Province(19K066)。
文摘Objective To explore the protective effects and mechanism of Zuogui Jiangtang Jieyu Formula(左归降糖解郁方,ZGJTJYF)on hippocampal neurons in rats of diabetes complicated with depression(DD)via the TRP/KYN metabolic pathway.Methods(i)In vivo experiments:60 specified pathogen free(SPF)grade male Sprague-Dawley(SD)rats were randomly divided into six groups with 10 rats in each groups:control,DD model,positive(1.8 mg/kg fluoxetine+0.18 g/kg metformin),high-dose ZGJTJYF(ZGJTJYFH,40.500 g/kg ZGJTJYF),middle-dose ZGJTJYF(ZGJTJYF-M,20.250 g/kg ZGJTJYF),and lowdose ZGJTJYF(ZGJTJYF-L,10.125 g/kg ZGJTJYF)groups.Except for the control group,other groups were established DD model by high-fat emulsion intake with single tail vein streptozotocin(STZ)and four weeks of chronic unpredictable mild stress(CUMS).All drug administration groups were treated by gavage during CUMS modeling,and the control and model groups were given equal amount of distilled water.After four weeks,the serum levels of blood glucose and glycosylated hemoglobin were measured to determine the hypoglycemic effect of ZGJTJYF.Moreover,the open field test and Morris water maze test were performed to evaluate the antidepressant effect of ZGJTJYF.Changes in 5-hydroxytryptamine(5-HT)level were detected via high-performance liquid chromatography with electrochemical detection(HPLC-ECD);the levels of tryptophan(TRP),kynurenine(KYN),and indoleamine 2,3-dioxygenase(IDO)in the hippocampus were detected using enzyme-linked immunosorbent assay(ELISA);the protein expression levels of synaptophysin(SYN)and postsynaptic density material-95(PSD-95)were detected via immunohistochemistry(IHC);and the protein expression levels of N-methyl-D-aspartate receptor(NR)2 A and NR2 B were detected using Western blot.(ii)In vitro experiments:five SPF grade SD pregnant rats(E16–18)were used to obtain primary hippocampal neurons(Ne),six SD new-born rats were used to collected primary astrocytes(As)and microglia(MG),and to establish a Ne-As-MG co-culture system.All co-culture systems were divided into six groups:control(PBS),model[150 mmol/L glucose+200μmol/L corticosterone(G&P)+PBS],blank(G&P+blank serum),positive(G&P+positive drug-containing serum),ZGJTJYF(G&P+ZGJTJYF serum),and 1-methyl-D-tryptophan(1-MT,IDO inhibitor)(G&P+1-MT)groups.After 18 h of intervention by corresponding treatment,immunofluorescence was used to analyze the protein expression levels of SYN,PSD-95,NR2 A,and NR2 B;ELISA was performed to measure the levels of interleukin(IL)-1β,IL-6,tumor necrosis factor(TNF)-α,and TRP/KYN metabolic pathway-related factors[TRP,KYN,kynurenine acid(KYNA),quinolinic acid(QUIN)].Results(i)In vivo experimental results showed that ZGJTJYF-M and ZGJTJYF-L significantly improved the elevated blood glucose state of DD rats(P<0.01 and P<0.05,respectively);ZGJTJYF-H,ZGJTJYF-M,and ZGJTJYF-L increased their autonomous activity,learning,and memory ability(P<0.01,P<0.01,and P<0.05,respectively).Moreover,the levels of 5-HT and TRP were significantly increased(P<0.01),and the levels of KYN and IDO were significantly decreased in the hippocampus(P<0.01)of rats after ZGJTJYF-M treatment.The protein expression levels of SYN and PSD-95 were significantly upregulated in hippocampal neurons(P<0.01),while the abnormal activation of NR2A and NR2B was markedly inhibited in hippocampus(P<0.05)of rats after ZGJTJYF-M treatment.(ii)In vitro experimental results showed that ZGJTJYF-containing serum significantly increased the protein expression levels of SYN and PSD-95 in hippocampal neurons(P<0.01),decreased the levels of IL-1β(P<0.01),IL-6(P<0.05),TNF-α(P<0.01),IDO(P<0.05),KYN(P<0.05),and QUIN(P<0.01),and increased the levels of TRP and KYNA(P<0.01)in the simulated DD state.ZGJTJYF also had an significantly inhibitory effect on the abnormal activation of NR2A and NR2B in neurons(P<0.05)in a stimulated DD state.Conclusion ZGJTJYF can effectively improve 5-HT deficiency in the hippocampus of rats by inhibiting IDO expression and regulating the TRP/KYN metabolic pathway,and it has a favorable protective effect on hippocampal neuron injury caused by DD.Therefore,ZGJTJYF is an effective potential therapeutic drug for the prevention and treatment of DD.
基金National Natural Science Foundation of China(31771128)the University of Macao (MYRG2016-00052-FHS+2 种基金MYRG2018-00134-FHS)Science and Technology Development Fund (FDCT)of Macao (FDCT 021/2015/A1016/2016/A1).
文摘Oxidative stress is one of the main causes of neurodegenerative diseases such as Alzheimer disease(AD).Our previous studies have shown that artemisinin,a anti-malaria Chinese medicine,with neuroprotective effect,however,the antioxidative effect of artemisinin and its potential mechanism remain to be elucidated.In the present study,the protective effect and the underlying mechanism of artemisinin against injury of hydrogen peroxide(H_2O_2) in SH-SY5Y and hippocampal neurons were studied.Our results show that artemisinin protected SH-SY5Y and hippocampal neuronal cells from H_2O_2-induced cell death at clinically relevant concentrations in a concentration-dependent manner.Further studies showed that artemisinin significantly reduced cell death caused by H_2O_2 by restoring nuclear morphology,abnormal changes in intracellular ROS,activation of caspase 3,lactate dehydrogenase release and mitochondrial membrane potential.Hoechst staining and flow cytometry showed that artemisinin significantly reduced the apoptosis of SH-SY5Y cells exposed to H_2O_2.Western blotting analysis showed that artemisinin stimulated the phosphorylation and activation of AMP-activated protein kinase(AMPK) in SH-SY5Y cells in a time and concentration-dependent manner,whereas the application of AMPK inhibitor Compound C or decrease in expression of AMPKα with shRNA specific for AMPKα blocked the protective effect of artemisinin.Similar results were obtained in primary cultured hippocampal neurons.Taken together,these results indicate that artemisinin can protect neuronal cells from oxidative damage,at least in part through the activation of AMPK.Because artemisinin is relatively inexpensive and has few side effects,our findings support the role of artemisinin as a potential therapeutic agent for neurodegenerative diseases.
文摘Epilepsy can lead to the changes in neurons residing in the dentate gyrus. The present study aimed to observe the cell dividing features following epilepsy in adult rat hippocampi, and to study difference in cell proliferation between adult rats with common epilepsy and intractable epilepsy.Adult, male, Sprague Dawley rats ware randomly divided into control (n = 8, treatment with normal saline) and three expenmental groups: common epilepsy (n = 33), intractable epilepsy (n = 11), and drug-responsive (n = 25). Pilocarpine (15 mg/kg) was intrapentoneally administered to establish epilepsy in the three experimental groups. Rats that developed epilepsy were treated with chloral hydrate. Rats that did not exhibit spontaneous seizures were enrolled in the common epilepsy group, and rats with spontaneous seizure were included in the spontaneous seizure group. At 6 hours after epileptic attack termination, rats ware intraperitoneally injected with bromodeoxyuridine (BrdU; 50 mg/kg), an optimal marker forlabeling cell proliferation in vivo, four times.Immunohistochemistry results at 48 hours after BrdU injection indicated that the number of BrdU-positive cells was the highest in the common epilepsy group, followed by the control group,and lastly the intractable group (P 〈 0.01). In addition, the number of BrdU-positive cells in the common epilepsy group was similar to the drug-responsive group. The present findings demonstrated that intractable epilepsy led to decreased hippocampal neurons in adult rats when compared to common epilepsy.
文摘Summary: To explore the effect of different concentrations of corticosterone (CORT) on primary cultured hippocampal neurons and their Ca~2+ /CaMKⅡ expression and possible mechanism, the changes of hippocampal neurons were observed in terms of morphology, activity of cells, cell death, concentrations of cytosolic free calcium, and the expression of CaMKⅡ by using MTT assay, flow cytometry, fluorescent labeling of Fura-2/AM and Western blotting after 10~-7 , 10~-6 and 10~-5 mol/L of CORT was added to culture medium, The evident effect of 10~-6 and 10~-5 mol/L of CORT on the morphology of hippocampal neuron was found. Compared with control neurons, the activity of the cells was markedly decreased and [Ca~2+ ]_i increased in the neurons treated with 10~-6 and 10~-5 mol/L of CORT, but no change was observed in the neuron treated with 10~-7 mol/L of CORT. The death was either by way of apoptosis or necrosis in the cells treated with 10~-6 and 10~-5 mol/L of CORT respectively. The correlation analysis showed that a reverse correlation existed between [Ca~2+ ]_i and the expression of CaMKⅡ. Either apoptosis or necrosis occurs in the hippocampal neurons treated with CORT. The increased hippocampal [Ca~2+ ]_i is both the result of CORT impairing the hippocampal neurons and the cause of the apoptosis of hippocampal neurons and the decreased CaMKⅡ expression.
文摘BACKGROUND: The pharmacological action of opioid drugs is related to signal transduction of inhibitory guanine nucleotide binding protein. OBJECTIVE: To quantitatively and qualitatively analyze the influence of morphine on levels of type Ⅱ inhibitory guanine nucleotide binding protein (Gi2 protein) in primary cultured hippocampal neurons at different time points. DESIGN, TIME AND SETTING: A randomized controlled study, which was performed at the Department of Neurobiology, Changzheng Hospital, Second Military Medical University of Chinese PLA between September 2002 and March 2004. MATERIALS: Cerebral hippocampal neurons were obtained from newborn SD rats at 1 2 days of age. Biotin-antibody Ⅱ-avidin fluorescein isothiocyanate (Avidin-FITC) was purchased from Sigma Company (USA) and the Gi2 protein polyclonal antibody from Santa Cruz Biochemistry Company (USA). METHODS: Seven days after culture, mature hippocampal neurons were randomly divided into six groups: 4-, 8-, 16-, 24-, and 48-hour morphine groups, and a blank control group. Neurons in the morphine groups received morphine (10 μ mol/L), which could cause alterations of G-protein mRNA and cAMP expression in the prefrontal cortex. Neurons in the blank control group were given the same volume of saline. MAIN OUTCOME MEASURES: Gi2 protein levels were detected by an immunofluorescence technique, and were analyzed by the image analytic system with the use of green fluorescence intensity. RESULTS: Gi2 protein levels in hippocampal neurons gradually decreased in the 4-, 8-, 16-, 24-, and 48-hour morphine groups. In particular, Gi2 protein levels in the 16-, 24-, and 48-hour morphine groups were significantly lower than that in the blank control group (P 〈 0.05 0.01). CONCLUSION: Morphine may decrease Gi2 protein level in primary hippocampal neurons, and the decreasing trend is positively related to morphine-induced time.
文摘Objective: To study the rapid effect of glucocorticoids (GCs) on NMDA receptor activity in hippocampal neurons in stress and to elucidate its underlying probable membrane mechanisms. Methods: Whole-cell patch-clamp recording was used to assess the effect of stress concentration corticosterone (B) on the responses of cultured hippocampal neurons to glutamate and NMDA (N-methy-D-asparatic acid). To make clear the target of B, intracellular dialysis of B(10 μmol/L)through patch pipette and extracellular application of bovine serum albumin-conjugated corticosterone(B-BSA, 10 μmol/L)were carried out to observe their influence on peak amplitude of NMDA-evoked current. Results: B had a rapid, reversible and inhibitory effect on peak amplitude of GLU- or NMDA-evoked current in cultured hippocampal neurons. Furthermore, B-BSA had the inhibitory effect on INMDA as that of B, but intracellularly dialyzed B had no significant effect on I NMDA. Conclusion: These results suggest that under the condition of stress, GCs may rapidly, negatively regulate excitatory synaptic receptors-glutamate receptors (GluRs), especially NMDA receptor (NMDAR) in central nervous system, which is mediated by rapid membrane mechanisms, but not by classical, genomic mechanisms.
基金supported by the National Natural Science Foundation of China,Nos.31971035(to BML),31771182(to BML),81471116(to BML)the Natural Science Foundation of Jiangxi Province of China,Nos.20171BAB204019(to CS),20192ACB20022(to CS)。
文摘Excess extracellular glutamate leads to excitotoxicity,which induces neuronal death through the overactivation of N-methyl-D-aspartate receptors(NMDARs).Excitotoxicity is thought to be closely related to various acute and chronic neurological disorders,such as stroke and Alzheimer’s disease.Polygalasaponin F(PGSF)is a triterpenoid saponin monomer that can be isolated from Polygala japonica,and has been reported to protect cells against apoptosis.To investigate the mechanisms underlying the neuroprotective effects of PGSF against glutamateinduced cytotoxicity,PGSF-pretreated hippocampal neurons were exposed to glutamate for 24 hours.The results demonstrated that PGSF inhibited glutamate-induced hippocampal neuron death in a concentration-dependent manner and reduced glutamate-induced Ca^(2+)overload in the cultured neurons.In addition,PGSF partially blocked the excess activity of NMDARs,inhibited both the downregulation of NMDAR subunit NR2A expression and the upregulation of NMDAR subunit NR2B expression,and upregulated the expression of phosphorylated cyclic adenosine monophosphate-responsive element-binding protein and brain-derived neurotrophic factor.These findings suggest that PGSF protects cultured hippocampal neurons against glutamate-induced cytotoxicity by regulating NMDARs.The study was approved by the Institutional Animal Care Committee of Nanchang University(approval No.2017-0006)on December 29,2017.
基金Natural Science Foundation of China (NO.81373703 NO. 81674042)Basic research project of natural science in shaanxi province - major basic research project (NO. 2017zdjc-15)
文摘Objective: To establish a simple, effective and high-purity primary culture method for fetal rat hippocampalneurons. Methods: Wistar rats of gestational age 18 days were taken and the brain tissue was separated under themicroscope. Single neuronal cells were obtained by digestion with Brain Dissociation Kit, and then were seeded incell plates to observe the basic morphologic structure after 24h, 3d, and 5d. Immunofluorescence of microtubuleassociated protein 2 was applied to assess cell purity of the culture. Results: The hippocampal neurons obtained inthis culture method are in good condition and grow vigorously. On the 7th day after culture, the purity of neuronswas up to 99.62%. Conclusion: The method is simple and effective for obtaining the high-purity and stableneurons.