Objective To investigate the effects and mechanism of calcitonin gene-related peptide(CGRP)and substance P (SP) on proliferation of rat bone marrow mesenchymal stem cells.Methods The rBMSCs were isolated using whole b...Objective To investigate the effects and mechanism of calcitonin gene-related peptide(CGRP)and substance P (SP) on proliferation of rat bone marrow mesenchymal stem cells.Methods The rBMSCs were isolated using whole bone marrow展开更多
Musculoskeletal disorders are the leading causes of disability and result in reduced quality of life.The neuro-osteogenic network is one of the most promising fields in orthopaedic research.Neuropeptide Y(NPY)system h...Musculoskeletal disorders are the leading causes of disability and result in reduced quality of life.The neuro-osteogenic network is one of the most promising fields in orthopaedic research.Neuropeptide Y(NPY)system has been reported to be involved in the regulations of bone metabolism and homeostasis,which also provide feedback to the central NPY system via NPY receptors.Currently,potential roles of peripheral NPY in bone metabolism remain unclear.Growing evidence suggests that NPY can regulate biological actions of bone marrow mesenchymal stem cells,hematopoietic stem cells,endothelial cells,and chondrocytes via a local autocrine or paracrine manner by different NPY receptors.The regulative activities of NPY may be achieved through the plasticity of NPY receptors,and interactions among the targeted cells as well.In general,NPY can influence proliferation,apoptosis,differentiation,migration,mobilization,and cytokine secretion of different types of cells,and play crucial roles in the development of bone delayed/non-union,osteoporosis,and osteoarthritis.Further basic research should clarify detailed mechanisms of action of NPY on stem cells,and clinical investigations are also necessary to comprehensively evaluate potential applications of NPY and its receptor-targeted drugs in management of musculoskeletal disorders.展开更多
Osteoarthritis(OA)is a progressive degenerative joint sickness related with mechanics,obesity,ageing,etc.,mainly characterized by cartilage degeneration,subchondral bone damage and synovium inflammation.Coordinated me...Osteoarthritis(OA)is a progressive degenerative joint sickness related with mechanics,obesity,ageing,etc.,mainly characterized by cartilage degeneration,subchondral bone damage and synovium inflammation.Coordinated mechanical absorption and conduction of the joint play significant roles in the prevalence and development of OA.Subchondral bone is generally considered a load-burdening tissue where mechanosensitive cells are resident,including osteocytes,osteoblast lineage cells,and osteoclast lineage cells(especially less concerned in mechanical studies).Mechano-signaling imbalances affect complicated cellular events and disorders of subchondral bone homeostasis.This paper will focus on the significance of mechanical force as the pathogenesis,involvement of various mechanical force patterns in mechanosensitive cells,and mechanobiology research of loading devices in vitro and in vivo,which are further discussed.Additionally,various mechanosensing structures(e.g.,transient receptor potential channels,gap junctions,primary cilia,podosome-associated complexes,extracellular vesicles)and mechanotransduction signaling pathways(e.g.,Ca^(2+) signaling,Wnt/β-catenin,RhoA GTPase,focal adhesion kinase,cotranscriptional activators YAP/TAZ)in mechanosensitive bone cells.Finally,we highlight potential targets for improving mechanoprotection in the treatment of OA.These advances furnish an integration of mechanical regulation of subchondral bone homeostasis,as well as OA therapeutic approaches by modulating mechanical homeostasis.展开更多
Recent evidence highlights multifaceted biological needs to recapitulate the bone microenvironment for bone regeneration.Neurotization has great potential for realizing multi-system modulations in bone tissue engineer...Recent evidence highlights multifaceted biological needs to recapitulate the bone microenvironment for bone regeneration.Neurotization has great potential for realizing multi-system modulations in bone tissue engineering(BTE).However,a neural strategy involving all the key bone repair steps temporally has not yet been reported.In this study,we reported the neural tissue engineering hydrogel-encapsulated Schwann cell-derived exosomes(SC Exo).This sustained-release SC Exo system prominently enhanced bone regeneration by promoting innervation,immunoregulation,vascularization,and osteogenesis in vivo.Moreover,the in vitro results further confirmed that this system significantly induced M2 polarization of macrophages,tube formation of HUVECs,and BMSCs osteogenic differentiation.Furthermore,BMSCs osteogenesis was promoted by upregulating the TGF-β1/SMAD2/3 signaling pathway.In summary,a novel cell-free and easily prepared SC Exo neural engineering was successfully developed to promote bone regeneration by orchestrating the entire bone healing microenvironment,which may provide a new strategy for tissue engineering and clinical treatment of bone defects.展开更多
Bone metastasis is the leading cause of death in prostate cancer patients,for which there is currently no effective treatment.Since the bone microenvironment plays an important role in this process,attentions have bee...Bone metastasis is the leading cause of death in prostate cancer patients,for which there is currently no effective treatment.Since the bone microenvironment plays an important role in this process,attentions have been directed to the interactions between cancer cells and the bone microenvironment,including osteoclasts,osteoblasts,and bone stromal cells.Here,we explained the mechanism of interactions between prostate cancer cells and metastasis-associated cells within the bone microenvironment and further discussed the recent advances in targeted therapy of prostate cancer bone metastasis.This review also summarized the effects of bone microenvironment on prostate cancer metastasis and the related mechanisms,and provides insights for future prostate cancer metastasis studies.展开更多
Titanium(Ti)and its alloys have been extensively explored for treating load-bearing bone defects.How-ever,high-stress shielding,weak osteogenic activity,and insufficient vascularization remain key chal-lenges for the ...Titanium(Ti)and its alloys have been extensively explored for treating load-bearing bone defects.How-ever,high-stress shielding,weak osteogenic activity,and insufficient vascularization remain key chal-lenges for the long-term clinical outcomes of Ti-based implants.Herein,inspired by structural and func-tional cues of bone regeneration,a silicon-doped nano-hydroxyapatite(nSiHA)/titanium dioxide(TiO_(2))composite coating with a hierarchical micro/nano-network structure is constructed on the surface of a 3D-printed porous Ti scaffold via a combined strategy of acid-alkali(AA)treatment and electrochemi-cal deposition technique,which not only endows the scaffold with excellent osteoinduction ability but can also effectively immobilize and release vascular endothelial growth factor(VEGF).The results of the in vitro cell experiments show that the functionalized Ti scaffold significantly promotes osteogenesis in bone marrow mesenchymal stem cells(BMSCs)and angiogenesis in human umbilical vein endothelial cells(HUVECs)by activating the extracellular signal-regulated protein kinase(ERK)and HIF-1αsignaling pathways.After being implanted into a rat femoral condyle defect model,the functionalized Ti scaffold can induce in situ vascularized bone regeneration by orchestrating the two coupled processes of angio-genesis and osteogenesis.These findings indicate that the functionalized Ti scaffold has great potential in bone tissue regeneration and is a promising candidate for load-bearing bone defect repair.展开更多
Bone marrow is pivotal for normal hematopoiesis and immune responses,yet it is often compromised by malig-nancies.The bone microenvironment(BME),composed of bone and immune cells,maintains skeletal integrity and blood...Bone marrow is pivotal for normal hematopoiesis and immune responses,yet it is often compromised by malig-nancies.The bone microenvironment(BME),composed of bone and immune cells,maintains skeletal integrity and blood production.The emergence of primary or metastatic tumors in the skeletal system results in severe complications and contributes significantly to cancer-related mortality.These tumors set offa series of interac-tions among cancer,bone,and immune cells,and disrupt the BME locally or distantly.However,the drivers,participants,and underlying molecules of these interactions are not fully understood.This review explores the crosstalk between bone metabolism and immune responses,synthesizing current knowledge on the intersection of cancer and osteoimmune biology.It outlines how bone marrow immune cells can either facilitate or hinder tumor progression by interacting with bone cells and pinpoints the molecules responsible for immunosuppression within bone tumors.Moreover,it discusses how primary tumors remotely alter the BME,leading to systemic immune suppression in cancer patients.This knowledge provides critical rationales for emerging immunotherapies in the treatment of bone-related tumors.Taken together,by summarizing the intricate relationship between tumor cells and the BME,this review aims to deepen the understanding of the diversity,complexity,and dynamics at play during bone tumor progression.Ultimately,it highlights the potential of targeting bone-tumor interactions to correct aberrant immune functions,thereby inhibiting tumor growth and metastasis.展开更多
Large bone defects resulting from fractures and disease are a major clinical challenge,being often unable to heal spontaneously by the body’s repair mechanisms.Lines of evidence have shown that hypoxia-induced overpr...Large bone defects resulting from fractures and disease are a major clinical challenge,being often unable to heal spontaneously by the body’s repair mechanisms.Lines of evidence have shown that hypoxia-induced overproduction of ROS in bone defect region has a major impact on delaying bone regeneration.However,replenishing excess oxygen in a short time cause high oxygen tension that affect the activity of osteoblast precursor cells.Therefore,reasonably restoring the hypoxic condition of bone microenvironment is essential for facilitating bone repair.Herein,we designed ROS scavenging and responsive prolonged oxygen-generating hydrogels(CPP-L/GelMA)as a“bone microenvironment regulative hydrogel”to reverse the hypoxic microenvironment in bone defects region.CPP-L/GelMA hydrogels comprises an antioxidant enzyme catalase(CAT)and ROS-responsive oxygen-releasing nanoparticles(PFC@PLGA/PPS)co-loaded liposome(CCP-L)and GelMA hydrogels.Under hypoxic condition,CPP-L/GelMA can release CAT for degrading hydrogen peroxide to generate oxygen and be triggered by superfluous ROS to continuously release the oxygen for more than 2 weeks.The prolonged oxygen enriched microenvironment generated by CPP-L/GelMA hydrogel significantly enhanced angiogenesis and osteogenesis while inhibited osteoclastogenesis.Finally,CPP-L/GelMA showed excellent bone regeneration effect in a mice skull defect model through the Nrf2-BMAL1-autophagy pathway.Hence,CPP-L/GelMA,as a bone microenvironment regulative hydrogel for bone tissue respiration,can effectively scavenge ROS and provide prolonged oxygen supply according to the demand in bone defect region,possessing of great clinical therapeutic potential.展开更多
Bone marrow microenvironment (BMM) is the main sanctuary of leukemic stem cells (LSCs) and protects these cells against conventional therapies. However, it may open up an opportunity to target LSCs by breaking the clo...Bone marrow microenvironment (BMM) is the main sanctuary of leukemic stem cells (LSCs) and protects these cells against conventional therapies. However, it may open up an opportunity to target LSCs by breaking the close connection between LSCs and the BMM. The elimination of LSCs is of high importance, since they follow cancer stem cell theory as a part of this population. Based on cancer stem cell theory, a cell with stem cell-like features stands at the apex of the hierarchy and produces a heterogeneous population and governs the disease. Secretion of cytokines, chemokines, and extracellular vesicles, whether through autocrine or paracrine mechanisms by activation of downstream signaling pathways in LSCs, favors their persistence and makes the BMM less hospitable for normal stem cells. While all details about the interactions of the BMM and LSCs remain to be elucidated, some clinical trials have been designed to limit these reciprocal interactions to cure leukemia more effectively. In this review, we focus on chronic myeloid leukemia and acute myeloid leukemia LSCs and their milieu in the bone marrow, how to segregate them from the normal compartment, and finally the possible ways to eliminate these cells.展开更多
Irradiation induces bone injury by generating free radicals that adversely affect the microenvironment for Mesenchymal stem cells (MSCs) and damages bone marrow blood vessels. We wished to investigate the efficacy of ...Irradiation induces bone injury by generating free radicals that adversely affect the microenvironment for Mesenchymal stem cells (MSCs) and damages bone marrow blood vessels. We wished to investigate the efficacy of antioxidant administration in protecting stem cell microenvironments and promoting bone marrow vasculature recovery after radiation treatment. The antioxidant ascorbic acid was administered 3 times at a dosage: 150 mg/kg/day to experimenttal groups 3 days before targeted radiation by a unique Small Animal Radiation Research Platform (SARRP). Histological staining indicated that antioxidant treated mice had less severe bone marrow damage 1 week after irradiation with substantial marrow cellular recovery 4 weeks later. Flow cytometry analysis showed that antioxidant administration was correlated with a rebound in MSC quantity in bone marrow. Anti-oxidant treatment was also observed to allow for better vasculature retention and recovery through angiographic imaging. Our data suggests that pre-treatment with ascorbic acid serves to improve bone marrow microenvironments for bone marrow stem cells after radiation treatment.展开更多
Objective: The aim of the study was to investigate the expression pattern of hematopoietic transcription factor GATA-1, -2 and -3 genes in leukemic bone marrow (BM) micreenvironment [including bone marrow stremal c...Objective: The aim of the study was to investigate the expression pattern of hematopoietic transcription factor GATA-1, -2 and -3 genes in leukemic bone marrow (BM) micreenvironment [including bone marrow stremal cells (BMSCs) and BM hematopoietic cells]. Methods: Mononuclear cells were isolated from BM of patients with acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), or acute lymphoblasUc leukemia (ALL). Adherent cells (BMSCs) and nonadherent ceils (BM hematopoietic cells) were collected after long-term culture in vitro. The semi-quantitative expression levels of GATA genes in the BMSCs or BM hematopoietic cells from patients with leukemia were analyzed by using RT-PCR-ELISA and com- pared with normal controls. Results: The expression level of GATA-1 gene in the BMSCs from CML group was significantly lower than that of the normal controls. The expression level of GATA-3 gene in the BMSCs from ALL was higher than that of the normal controls, but that from CML was lower than the normal controls. Dominant expression of GATA-3 gene was found in the normal BM hematopoietic cells. The dominant expression of GATA-2 gene was found in the normal BMSCs and the BMSCs from CML, whereas the dominant expression of GATA-3 gene was detected in the BMSCs from AML. Conclusion: GATA-1, -2 and -3 genes might play a role in hematopoiesis regulation in leukemia, and the changes of expression pattern of GATA genes might influence the hematopoiesis in BM microenvironment and relate to the pathogenesis and development of leukemia.展开更多
T-2 toxin is the most widespread mycotoxin in crops,feed and food,which poses a serious threat to body health.Bone is the main target tissue for T-2 toxin accumulation.Ingestion of food contaminated by T-2 toxin is th...T-2 toxin is the most widespread mycotoxin in crops,feed and food,which poses a serious threat to body health.Bone is the main target tissue for T-2 toxin accumulation.Ingestion of food contaminated by T-2 toxin is the main cause of Kashin-Beck disease.However,the specific mechanism of bone damage caused by T-2 toxin is still unclear.In this study,a total of 40 male C57BL/6N mice were divided into four groups and orally treated with 0,0.5,1.0 and 2.0 mg·kg^(-1) body weight T-2 toxin for 28 days.The results showed that exposure to T-2 toxin led to weight loss,bone mineral density reduction and femoral structural damage of mice.In addition,osteoblast-mediated bone formation was inhibited,and osteoclast-mediated bone resorption was enhanced.Meanwhile,the levels of bone metabolism-related hormones including parathyroid hormone,calcitonin and 1,25-dihydroxyvitamin D3 were reduced.More importantly,it was found that the level of neuropeptide Y(a neurohormone)was decreased.These results provided a new perspetive for understanding the osteotoxicity of T-2 toxin.展开更多
Bone metastasis is a common and debilitating consequence of lung cancer:30%-40% of patients with nonsmall cell lung cancer develop bone metastases during the course of their disease. Lung cancer cells find a favorable...Bone metastasis is a common and debilitating consequence of lung cancer:30%-40% of patients with nonsmall cell lung cancer develop bone metastases during the course of their disease. Lung cancer cells find a favorable soil in the bone microenvironment due to factors released by the bone matrix, the immune system cells, and the same cancer cells. Many aspects of the cross-talk among lung tumor cells, the immune system,and bone cells are not clear, but this review aims to summarize the recent findings in this field, with particular attention to studies conducted to identify biomarkers for early detection of lung cancer bone metastases.展开更多
To study the expression of the bFGF and its receptor in the mouse bone marrow by treatment with acute radioactive injury and Ligustrazine, 56 mice were divided into 3 groups: normal group, radiation injured group and...To study the expression of the bFGF and its receptor in the mouse bone marrow by treatment with acute radioactive injury and Ligustrazine, 56 mice were divided into 3 groups: normal group, radiation injured group and Ligustrazine group. After irradiation by 6.0 Gy 60 Co γ ray, each mouse was orally given 0.1 ml Ligustrazine twice a day for 13 days in Ligustrazine group, and each mouse in radiation injured group was orally given equal amount of saline. On the 3rd, 7th, 14th day after irradiation, bone marrow mono nuclear cells (BMMNC) were counted, and the expression levels of bFGF and bFGFR in bone marrow were evaluated by immunohistochemistry and flow cytometry analysis respectively. On the 3rd, 7th, 14th day after irradiation, expression of bFGF in bone marrow were significantly lower than in normal group ( P <0.05 or P <0.01). Expressions of bFGF and bFGFR were much higher in Ligustrazine treated group than that in the control group ( P <0.05 or P <0.01). Ligustrazine potentiate the expression of bFGF and bFGFR in bone marrow MNC to recover the bone marrow hematopoiesis inductive microenvironment, which is one of the mechanisms by which Ligustrazine rebuild the bone marrow hematopoiesis after acute radioactive injury.展开更多
Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration.Thus,bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s ...Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration.Thus,bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s electrical microenvironment(EM).However,traditional manufacturing strategies still encounter limitations in creating personalized bio-piezoelectric scaffolds,hindering their clinical applications.Three-dimensional(3D)/four-dimensional(4D)printing technology based on the principle of layer-by-layer forming and stacking of discrete materials has demonstrated outstanding advantages in fabricating bio-piezoelectric scaffolds in a more complex-shaped structure.Notably,4D printing functionality-shifting bio-piezoelectric scaffolds can provide a time-dependent programmable tissue EM in response to external stimuli for bone regeneration.In this review,we first summarize the physicochemical properties of commonly used bio-piezoelectric materials(including polymers,ceramics,and their composites)and representative biological findings for bone regeneration.Then,we discuss the latest research advances in the 3D printing of bio-piezoelectric scaffolds in terms of feedstock selection,printing process,induction strategies,and potential applications.Besides,some related challenges such as feedstock scalability,printing resolution,stress-to-polarization conversion efficiency,and non-invasive induction ability after implantation have been put forward.Finally,we highlight the potential of shape/property/functionality-shifting smart 4D bio-piezoelectric scaffolds in bone tissue engineering(BTE).Taken together,this review emphasizes the appealing utility of 3D/4D printed biological piezoelectric scaffolds as next-generation BTE implants.展开更多
A number of studies have focused on the beneficial properties of Curcumin (diferuloyl methane, used in South Asian cuisine and traditional medicine) such as the chemoprevention of cancer. Recent studies have also indi...A number of studies have focused on the beneficial properties of Curcumin (diferuloyl methane, used in South Asian cuisine and traditional medicine) such as the chemoprevention of cancer. Recent studies have also indicated that this material has significant benefits for the treatment of cancer and is currently undergoing several clinical trials. We have been interested in the application of this compound as a therapeutic agent for advanced prostate cancer, particularly the skeletal complications in this malignancy. Our earlier work indicated that this compound could inhibit the osteomimetic properties which occur in castration resistant prostate cancer cells, by interfering with the common denominators between these cancer cells and the bone cells in the metastatic tumor microenvironment, namely the osteoblasts and the osteoclast. We predicted that curcumin could break the vicious cycle of reciprocal stimulation that results in uncontrolled osteolysis in the bony matrix. In this work, we have evaluated the potential of this compound in inhibiting the bone metastasis of hormone refractory prostate cancer cells in an established animal model. Our results strongly suggest that curcumin modulates the TGF-βsignaling that occurs due to bone matrix degradation by up-regulating the metastasis inhibitory bone morphogenic protein-7 (BMP-7). This enhancement of BMP-7 in the context of TGF-β in the tumor microenvironment is shown to enhance the mesenchymal-to-epithelial transition. Most importantly, we show that as a result of BMP-7 up-regulation, a novel brown/beige adipogenic differentiation program is also up-regulated which plays a role in the inhibition of bone metastasis. Our results suggest that curcumin may subvert the TGF-β signaling to an alternative adipogenic differentiation program in addition to the previously established interference with the osteomimetic properties, thus inhibiting the bone metastatic processes in a chemopreventive as well as therapeutic setting.展开更多
Spinal cord injury(SCI)is a devastating condition with complex pathological mechanisms that lead to sensory,motor,and autonomic dysfunction below the site of injury.To date,no effective therapy is available for the tr...Spinal cord injury(SCI)is a devastating condition with complex pathological mechanisms that lead to sensory,motor,and autonomic dysfunction below the site of injury.To date,no effective therapy is available for the treatment of SCI.Recently,bone marrow-derived mesenchymal stem cells(BMMSCs)have been considered to be the most promising source for cellular therapies following SCI.The objective of the present review is to summarize the most recent insights into the cellular and molecular mechanism using BMMSC therapy to treat SCI.In this work,we review the specific mechanism of BMMSCs in SCI repair mainly from the following aspects:Neuroprotection,axon sprouting and/or regeneration,myelin regeneration,inhibitory microenvironments,glial scar formation,immunomodulation,and angiogenesis.Additionally,we summarize the latest evidence on the application of BMMSCs in clinical trials and further discuss the challenges and future directions for stem cell therapy in SCI models.展开更多
文摘Objective To investigate the effects and mechanism of calcitonin gene-related peptide(CGRP)and substance P (SP) on proliferation of rat bone marrow mesenchymal stem cells.Methods The rBMSCs were isolated using whole bone marrow
基金Supported by the National Natural Science Foundation of China,No.81830079Guangzhou Health Science and Technology Project,No.20191A011116Science and Technology Project of Guangzhou Huadu District,No.18-HDWS-003.
文摘Musculoskeletal disorders are the leading causes of disability and result in reduced quality of life.The neuro-osteogenic network is one of the most promising fields in orthopaedic research.Neuropeptide Y(NPY)system has been reported to be involved in the regulations of bone metabolism and homeostasis,which also provide feedback to the central NPY system via NPY receptors.Currently,potential roles of peripheral NPY in bone metabolism remain unclear.Growing evidence suggests that NPY can regulate biological actions of bone marrow mesenchymal stem cells,hematopoietic stem cells,endothelial cells,and chondrocytes via a local autocrine or paracrine manner by different NPY receptors.The regulative activities of NPY may be achieved through the plasticity of NPY receptors,and interactions among the targeted cells as well.In general,NPY can influence proliferation,apoptosis,differentiation,migration,mobilization,and cytokine secretion of different types of cells,and play crucial roles in the development of bone delayed/non-union,osteoporosis,and osteoarthritis.Further basic research should clarify detailed mechanisms of action of NPY on stem cells,and clinical investigations are also necessary to comprehensively evaluate potential applications of NPY and its receptor-targeted drugs in management of musculoskeletal disorders.
基金supported by the Integration Project of NSFC Joint Fund for Regional Innovation and Development(U23A6008)the Key Programme of National Natural Science Foundation of China(81930067)+2 种基金the Youth Program of National Natural Science Foundation of China(82002316)the General Program of Natural Science Foundation of Chongqing(cstc2019jcyj-msxmX0176)the China Postdoctoral Science Foundation(2021MD703946).
文摘Osteoarthritis(OA)is a progressive degenerative joint sickness related with mechanics,obesity,ageing,etc.,mainly characterized by cartilage degeneration,subchondral bone damage and synovium inflammation.Coordinated mechanical absorption and conduction of the joint play significant roles in the prevalence and development of OA.Subchondral bone is generally considered a load-burdening tissue where mechanosensitive cells are resident,including osteocytes,osteoblast lineage cells,and osteoclast lineage cells(especially less concerned in mechanical studies).Mechano-signaling imbalances affect complicated cellular events and disorders of subchondral bone homeostasis.This paper will focus on the significance of mechanical force as the pathogenesis,involvement of various mechanical force patterns in mechanosensitive cells,and mechanobiology research of loading devices in vitro and in vivo,which are further discussed.Additionally,various mechanosensing structures(e.g.,transient receptor potential channels,gap junctions,primary cilia,podosome-associated complexes,extracellular vesicles)and mechanotransduction signaling pathways(e.g.,Ca^(2+) signaling,Wnt/β-catenin,RhoA GTPase,focal adhesion kinase,cotranscriptional activators YAP/TAZ)in mechanosensitive bone cells.Finally,we highlight potential targets for improving mechanoprotection in the treatment of OA.These advances furnish an integration of mechanical regulation of subchondral bone homeostasis,as well as OA therapeutic approaches by modulating mechanical homeostasis.
基金This work was supported by National Natural Science Foundation of China.(No.82170960,81870769,51973243,52173150 and 82201098)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515110379 and 2021A1515010782)the Shenzhen Basic Research Project(JCYJ20190807155801657).
文摘Recent evidence highlights multifaceted biological needs to recapitulate the bone microenvironment for bone regeneration.Neurotization has great potential for realizing multi-system modulations in bone tissue engineering(BTE).However,a neural strategy involving all the key bone repair steps temporally has not yet been reported.In this study,we reported the neural tissue engineering hydrogel-encapsulated Schwann cell-derived exosomes(SC Exo).This sustained-release SC Exo system prominently enhanced bone regeneration by promoting innervation,immunoregulation,vascularization,and osteogenesis in vivo.Moreover,the in vitro results further confirmed that this system significantly induced M2 polarization of macrophages,tube formation of HUVECs,and BMSCs osteogenic differentiation.Furthermore,BMSCs osteogenesis was promoted by upregulating the TGF-β1/SMAD2/3 signaling pathway.In summary,a novel cell-free and easily prepared SC Exo neural engineering was successfully developed to promote bone regeneration by orchestrating the entire bone healing microenvironment,which may provide a new strategy for tissue engineering and clinical treatment of bone defects.
基金This work was supported the National Natural Science Foundation of China(Nos.81803097 and 81602727)the Natural Science Foundation of Shandong Province(No.ZR2017QH005).
文摘Bone metastasis is the leading cause of death in prostate cancer patients,for which there is currently no effective treatment.Since the bone microenvironment plays an important role in this process,attentions have been directed to the interactions between cancer cells and the bone microenvironment,including osteoclasts,osteoblasts,and bone stromal cells.Here,we explained the mechanism of interactions between prostate cancer cells and metastasis-associated cells within the bone microenvironment and further discussed the recent advances in targeted therapy of prostate cancer bone metastasis.This review also summarized the effects of bone microenvironment on prostate cancer metastasis and the related mechanisms,and provides insights for future prostate cancer metastasis studies.
基金supported by the Sichuan Science and Technology Program (Nos.2019JDTD0008 and 2022YFG0109)the China Postdoctoral Science Foundation (Nos.2021M692316 and 2020TQ0218).
文摘Titanium(Ti)and its alloys have been extensively explored for treating load-bearing bone defects.How-ever,high-stress shielding,weak osteogenic activity,and insufficient vascularization remain key chal-lenges for the long-term clinical outcomes of Ti-based implants.Herein,inspired by structural and func-tional cues of bone regeneration,a silicon-doped nano-hydroxyapatite(nSiHA)/titanium dioxide(TiO_(2))composite coating with a hierarchical micro/nano-network structure is constructed on the surface of a 3D-printed porous Ti scaffold via a combined strategy of acid-alkali(AA)treatment and electrochemi-cal deposition technique,which not only endows the scaffold with excellent osteoinduction ability but can also effectively immobilize and release vascular endothelial growth factor(VEGF).The results of the in vitro cell experiments show that the functionalized Ti scaffold significantly promotes osteogenesis in bone marrow mesenchymal stem cells(BMSCs)and angiogenesis in human umbilical vein endothelial cells(HUVECs)by activating the extracellular signal-regulated protein kinase(ERK)and HIF-1αsignaling pathways.After being implanted into a rat femoral condyle defect model,the functionalized Ti scaffold can induce in situ vascularized bone regeneration by orchestrating the two coupled processes of angio-genesis and osteogenesis.These findings indicate that the functionalized Ti scaffold has great potential in bone tissue regeneration and is a promising candidate for load-bearing bone defect repair.
基金supported by the Fundamental Research Funds for the Zhejiang Provin-cial Universities(grant number:2023QZJH60)the Science Fund Pro-gram for Distinguished Young Scholars from the National Natural Science Foundation of China(grant number:588020-X42306/041)the startup fund from the Life Sciences Institute of Zhejiang University to W.Z.
文摘Bone marrow is pivotal for normal hematopoiesis and immune responses,yet it is often compromised by malig-nancies.The bone microenvironment(BME),composed of bone and immune cells,maintains skeletal integrity and blood production.The emergence of primary or metastatic tumors in the skeletal system results in severe complications and contributes significantly to cancer-related mortality.These tumors set offa series of interac-tions among cancer,bone,and immune cells,and disrupt the BME locally or distantly.However,the drivers,participants,and underlying molecules of these interactions are not fully understood.This review explores the crosstalk between bone metabolism and immune responses,synthesizing current knowledge on the intersection of cancer and osteoimmune biology.It outlines how bone marrow immune cells can either facilitate or hinder tumor progression by interacting with bone cells and pinpoints the molecules responsible for immunosuppression within bone tumors.Moreover,it discusses how primary tumors remotely alter the BME,leading to systemic immune suppression in cancer patients.This knowledge provides critical rationales for emerging immunotherapies in the treatment of bone-related tumors.Taken together,by summarizing the intricate relationship between tumor cells and the BME,this review aims to deepen the understanding of the diversity,complexity,and dynamics at play during bone tumor progression.Ultimately,it highlights the potential of targeting bone-tumor interactions to correct aberrant immune functions,thereby inhibiting tumor growth and metastasis.
基金supported by National Science Foundation of China(Grant No.32271409,82002370,31800806)National Basic Research Program of China(2021YFA1201404)+5 种基金China Postdoctoral Science Foundation(Grant No.2019M661806)Major Project of NSFC(81991514)Natural Science Foundation of Jiangsu Province(Grant No.BK20200117)Jiangsu postdoctoral research support project(Grant No.2021K059A)Program of Innovation and Entrepreneurship of Jiangsu Province,Jiangsu Provincial Key Medical Center Foundation,Jiangsu Provincial Medical Outstanding Talent Foundation,Jiangsu Provincial Medical Youth Talent Foundation and Jiangsu Provincial Key Medical Talent Foundation,the Fundamental Research Funds for the Central Universities(14380493,14380494)Changzhou Sci&Tech Program(Grant No.CJ20220103).
文摘Large bone defects resulting from fractures and disease are a major clinical challenge,being often unable to heal spontaneously by the body’s repair mechanisms.Lines of evidence have shown that hypoxia-induced overproduction of ROS in bone defect region has a major impact on delaying bone regeneration.However,replenishing excess oxygen in a short time cause high oxygen tension that affect the activity of osteoblast precursor cells.Therefore,reasonably restoring the hypoxic condition of bone microenvironment is essential for facilitating bone repair.Herein,we designed ROS scavenging and responsive prolonged oxygen-generating hydrogels(CPP-L/GelMA)as a“bone microenvironment regulative hydrogel”to reverse the hypoxic microenvironment in bone defects region.CPP-L/GelMA hydrogels comprises an antioxidant enzyme catalase(CAT)and ROS-responsive oxygen-releasing nanoparticles(PFC@PLGA/PPS)co-loaded liposome(CCP-L)and GelMA hydrogels.Under hypoxic condition,CPP-L/GelMA can release CAT for degrading hydrogen peroxide to generate oxygen and be triggered by superfluous ROS to continuously release the oxygen for more than 2 weeks.The prolonged oxygen enriched microenvironment generated by CPP-L/GelMA hydrogel significantly enhanced angiogenesis and osteogenesis while inhibited osteoclastogenesis.Finally,CPP-L/GelMA showed excellent bone regeneration effect in a mice skull defect model through the Nrf2-BMAL1-autophagy pathway.Hence,CPP-L/GelMA,as a bone microenvironment regulative hydrogel for bone tissue respiration,can effectively scavenge ROS and provide prolonged oxygen supply according to the demand in bone defect region,possessing of great clinical therapeutic potential.
文摘Bone marrow microenvironment (BMM) is the main sanctuary of leukemic stem cells (LSCs) and protects these cells against conventional therapies. However, it may open up an opportunity to target LSCs by breaking the close connection between LSCs and the BMM. The elimination of LSCs is of high importance, since they follow cancer stem cell theory as a part of this population. Based on cancer stem cell theory, a cell with stem cell-like features stands at the apex of the hierarchy and produces a heterogeneous population and governs the disease. Secretion of cytokines, chemokines, and extracellular vesicles, whether through autocrine or paracrine mechanisms by activation of downstream signaling pathways in LSCs, favors their persistence and makes the BMM less hospitable for normal stem cells. While all details about the interactions of the BMM and LSCs remain to be elucidated, some clinical trials have been designed to limit these reciprocal interactions to cure leukemia more effectively. In this review, we focus on chronic myeloid leukemia and acute myeloid leukemia LSCs and their milieu in the bone marrow, how to segregate them from the normal compartment, and finally the possible ways to eliminate these cells.
文摘Irradiation induces bone injury by generating free radicals that adversely affect the microenvironment for Mesenchymal stem cells (MSCs) and damages bone marrow blood vessels. We wished to investigate the efficacy of antioxidant administration in protecting stem cell microenvironments and promoting bone marrow vasculature recovery after radiation treatment. The antioxidant ascorbic acid was administered 3 times at a dosage: 150 mg/kg/day to experimenttal groups 3 days before targeted radiation by a unique Small Animal Radiation Research Platform (SARRP). Histological staining indicated that antioxidant treated mice had less severe bone marrow damage 1 week after irradiation with substantial marrow cellular recovery 4 weeks later. Flow cytometry analysis showed that antioxidant administration was correlated with a rebound in MSC quantity in bone marrow. Anti-oxidant treatment was also observed to allow for better vasculature retention and recovery through angiographic imaging. Our data suggests that pre-treatment with ascorbic acid serves to improve bone marrow microenvironments for bone marrow stem cells after radiation treatment.
基金Supported by a grant from National Scaling Height Program, China (No. 95-zhuan-10)
文摘Objective: The aim of the study was to investigate the expression pattern of hematopoietic transcription factor GATA-1, -2 and -3 genes in leukemic bone marrow (BM) micreenvironment [including bone marrow stremal cells (BMSCs) and BM hematopoietic cells]. Methods: Mononuclear cells were isolated from BM of patients with acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), or acute lymphoblasUc leukemia (ALL). Adherent cells (BMSCs) and nonadherent ceils (BM hematopoietic cells) were collected after long-term culture in vitro. The semi-quantitative expression levels of GATA genes in the BMSCs or BM hematopoietic cells from patients with leukemia were analyzed by using RT-PCR-ELISA and com- pared with normal controls. Results: The expression level of GATA-1 gene in the BMSCs from CML group was significantly lower than that of the normal controls. The expression level of GATA-3 gene in the BMSCs from ALL was higher than that of the normal controls, but that from CML was lower than the normal controls. Dominant expression of GATA-3 gene was found in the normal BM hematopoietic cells. The dominant expression of GATA-2 gene was found in the normal BMSCs and the BMSCs from CML, whereas the dominant expression of GATA-3 gene was detected in the BMSCs from AML. Conclusion: GATA-1, -2 and -3 genes might play a role in hematopoiesis regulation in leukemia, and the changes of expression pattern of GATA genes might influence the hematopoiesis in BM microenvironment and relate to the pathogenesis and development of leukemia.
基金Supported by the National Natural Science Foundation of China(31872530)。
文摘T-2 toxin is the most widespread mycotoxin in crops,feed and food,which poses a serious threat to body health.Bone is the main target tissue for T-2 toxin accumulation.Ingestion of food contaminated by T-2 toxin is the main cause of Kashin-Beck disease.However,the specific mechanism of bone damage caused by T-2 toxin is still unclear.In this study,a total of 40 male C57BL/6N mice were divided into four groups and orally treated with 0,0.5,1.0 and 2.0 mg·kg^(-1) body weight T-2 toxin for 28 days.The results showed that exposure to T-2 toxin led to weight loss,bone mineral density reduction and femoral structural damage of mice.In addition,osteoblast-mediated bone formation was inhibited,and osteoclast-mediated bone resorption was enhanced.Meanwhile,the levels of bone metabolism-related hormones including parathyroid hormone,calcitonin and 1,25-dihydroxyvitamin D3 were reduced.More importantly,it was found that the level of neuropeptide Y(a neurohormone)was decreased.These results provided a new perspetive for understanding the osteotoxicity of T-2 toxin.
基金Supported by Italian Ministry of Health:Ricerca Sanitaria Finalizzata e Giovani Ricercatori 2009,No.GR 2009-1584485
文摘Bone metastasis is a common and debilitating consequence of lung cancer:30%-40% of patients with nonsmall cell lung cancer develop bone metastases during the course of their disease. Lung cancer cells find a favorable soil in the bone microenvironment due to factors released by the bone matrix, the immune system cells, and the same cancer cells. Many aspects of the cross-talk among lung tumor cells, the immune system,and bone cells are not clear, but this review aims to summarize the recent findings in this field, with particular attention to studies conducted to identify biomarkers for early detection of lung cancer bone metastases.
基金ThisprojectwassupportedbyagrantfromtheNationalNatu ralScienceFoundationofChina (No .39870 92 6 )
文摘To study the expression of the bFGF and its receptor in the mouse bone marrow by treatment with acute radioactive injury and Ligustrazine, 56 mice were divided into 3 groups: normal group, radiation injured group and Ligustrazine group. After irradiation by 6.0 Gy 60 Co γ ray, each mouse was orally given 0.1 ml Ligustrazine twice a day for 13 days in Ligustrazine group, and each mouse in radiation injured group was orally given equal amount of saline. On the 3rd, 7th, 14th day after irradiation, bone marrow mono nuclear cells (BMMNC) were counted, and the expression levels of bFGF and bFGFR in bone marrow were evaluated by immunohistochemistry and flow cytometry analysis respectively. On the 3rd, 7th, 14th day after irradiation, expression of bFGF in bone marrow were significantly lower than in normal group ( P <0.05 or P <0.01). Expressions of bFGF and bFGFR were much higher in Ligustrazine treated group than that in the control group ( P <0.05 or P <0.01). Ligustrazine potentiate the expression of bFGF and bFGFR in bone marrow MNC to recover the bone marrow hematopoiesis inductive microenvironment, which is one of the mechanisms by which Ligustrazine rebuild the bone marrow hematopoiesis after acute radioactive injury.
基金supported by grants from the National Natural Science Foundation of China(52205363)Fundamental Research Funds for the Central Universities(2019kfyRCPY044 and 2021GCRC002)+3 种基金Program for HUST Academic Frontier Youth Team(2018QYTD04)Program for Innovative Research Team of the Ministry of Education(IRT1244)Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project:HZQB-KCZYB-2020030the Guangdong Provincial Department of Science and Technology(Key-Area Research and Development Program of Guangdong Province)under the Grant 2020B090923002。
文摘Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration.Thus,bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s electrical microenvironment(EM).However,traditional manufacturing strategies still encounter limitations in creating personalized bio-piezoelectric scaffolds,hindering their clinical applications.Three-dimensional(3D)/four-dimensional(4D)printing technology based on the principle of layer-by-layer forming and stacking of discrete materials has demonstrated outstanding advantages in fabricating bio-piezoelectric scaffolds in a more complex-shaped structure.Notably,4D printing functionality-shifting bio-piezoelectric scaffolds can provide a time-dependent programmable tissue EM in response to external stimuli for bone regeneration.In this review,we first summarize the physicochemical properties of commonly used bio-piezoelectric materials(including polymers,ceramics,and their composites)and representative biological findings for bone regeneration.Then,we discuss the latest research advances in the 3D printing of bio-piezoelectric scaffolds in terms of feedstock selection,printing process,induction strategies,and potential applications.Besides,some related challenges such as feedstock scalability,printing resolution,stress-to-polarization conversion efficiency,and non-invasive induction ability after implantation have been put forward.Finally,we highlight the potential of shape/property/functionality-shifting smart 4D bio-piezoelectric scaffolds in bone tissue engineering(BTE).Taken together,this review emphasizes the appealing utility of 3D/4D printed biological piezoelectric scaffolds as next-generation BTE implants.
文摘A number of studies have focused on the beneficial properties of Curcumin (diferuloyl methane, used in South Asian cuisine and traditional medicine) such as the chemoprevention of cancer. Recent studies have also indicated that this material has significant benefits for the treatment of cancer and is currently undergoing several clinical trials. We have been interested in the application of this compound as a therapeutic agent for advanced prostate cancer, particularly the skeletal complications in this malignancy. Our earlier work indicated that this compound could inhibit the osteomimetic properties which occur in castration resistant prostate cancer cells, by interfering with the common denominators between these cancer cells and the bone cells in the metastatic tumor microenvironment, namely the osteoblasts and the osteoclast. We predicted that curcumin could break the vicious cycle of reciprocal stimulation that results in uncontrolled osteolysis in the bony matrix. In this work, we have evaluated the potential of this compound in inhibiting the bone metastasis of hormone refractory prostate cancer cells in an established animal model. Our results strongly suggest that curcumin modulates the TGF-βsignaling that occurs due to bone matrix degradation by up-regulating the metastasis inhibitory bone morphogenic protein-7 (BMP-7). This enhancement of BMP-7 in the context of TGF-β in the tumor microenvironment is shown to enhance the mesenchymal-to-epithelial transition. Most importantly, we show that as a result of BMP-7 up-regulation, a novel brown/beige adipogenic differentiation program is also up-regulated which plays a role in the inhibition of bone metastasis. Our results suggest that curcumin may subvert the TGF-β signaling to an alternative adipogenic differentiation program in addition to the previously established interference with the osteomimetic properties, thus inhibiting the bone metastatic processes in a chemopreventive as well as therapeutic setting.
基金Supported by the National Key R&D Program of China,No.2020YFC2008502。
文摘Spinal cord injury(SCI)is a devastating condition with complex pathological mechanisms that lead to sensory,motor,and autonomic dysfunction below the site of injury.To date,no effective therapy is available for the treatment of SCI.Recently,bone marrow-derived mesenchymal stem cells(BMMSCs)have been considered to be the most promising source for cellular therapies following SCI.The objective of the present review is to summarize the most recent insights into the cellular and molecular mechanism using BMMSC therapy to treat SCI.In this work,we review the specific mechanism of BMMSCs in SCI repair mainly from the following aspects:Neuroprotection,axon sprouting and/or regeneration,myelin regeneration,inhibitory microenvironments,glial scar formation,immunomodulation,and angiogenesis.Additionally,we summarize the latest evidence on the application of BMMSCs in clinical trials and further discuss the challenges and future directions for stem cell therapy in SCI models.