Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injur...Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injury remain limited.Recently,extracellular vesicles released from mesenchymal stem/stromal cells have emerged as a promising novel therapy for traumatic brain injury.Extracellular vesicles are small membrane-bound vesicles that are naturally released by cells,including those in the brain,and can be engineered to contain therapeutic cargo,such as anti-inflammatory molecules,growth factors,and microRNAs.When administered intravenously,extra cellular vesicles can cross the blood-brain barrier and deliver their cargos to the site of injury,where they can be taken up by recipient cells and modulate the inflammatory response,promote neuroregeneration,and improve functional outcomes.In preclinical studies,extracellular vesicle-based therapies have shown promising results in promoting recove ry after traumatic brain injury,including reducing neuronal damage,improving cognitive function,and enhancing motor recovery.While further research is needed to establish the safety and efficacy of extra cellular vesicle-based therapies in humans,extra cellular vesicles represent a promising novel approach for the treatment of traumatic brain injury.In this review,we summarize mesenchymal ste m/stromal cell-de rived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration and brainderived extracellular vesicles as potential biofluid biomarkers in small and large animal models of traumatic brain injury.展开更多
Neurological injury caused by ischemic stroke is a major cause of permanent disability and death. The currently available neuroprotective drugs fail to achieve desired therapeutic efficacy mainly due to short circulat...Neurological injury caused by ischemic stroke is a major cause of permanent disability and death. The currently available neuroprotective drugs fail to achieve desired therapeutic efficacy mainly due to short circulation half-life and poor blood−brain barrier (BBB) permeability. For that, an edaravone-loaded pH/glutathione (pH/GSH) dual-responsive poly(amino acid) nanogel (NG/EDA) was developed to improve the neuroprotection of EDA. The nanogel was triggered by acidic and EDA-induced high-level GSH microenvironments, which enabled the selective and sustained release of EDA at the site of ischemic injury. NG/EDA exhibited a uniform sub-spherical morphology with a mean hydrodynamic diameter of 112.3 ± 8.2 nm. NG/EDA efficiently accumulated at the cerebral ischemic injury site of permanent middle cerebral artery occlusion (pMCAO) mice, showing an efficient BBB crossing feature. Notably, NG/EDA with 50 µM EDA significantly increased neuron survival (29.3%) following oxygen and glucose deprivation by inhibiting ferroptosis. In addition, administering NG/EDA for 7 d significantly reduced infarct volume to 22.2% ± 7.2% and decreased neurobehavioral scores from 9.0 ± 0.6 to 2.0 ± 0.8. Such a pH/GSH dual-responsive nanoplatform might provide a unique and promising modality for neuroprotection in ischemic stroke and other central nervous system diseases.展开更多
Venom snake-derived peptides have multiple biochemical,pharmacological,and toxicological profiles,allowing for the discovery of new medicinal products and therapeutic applications.This review specifically examines the f...Venom snake-derived peptides have multiple biochemical,pharmacological,and toxicological profiles,allowing for the discovery of new medicinal products and therapeutic applications.This review specifically examines the fundamental elements of neuroprotection offered by different oligopeptides derived from snake venom.It also includes a brief evaluation of short peptides that are being considered as potential therapeutic agents.Proline-rich peptides and tryptophyllin family peptides isolated from the crude venom of Viperidae family snakes,specifically Bothrops atrox,Bothrops jararaca,and Bothrops moojeni,have been shown to have pro-survival properties,the ability to reduce oxidative stress,and the ability to promote cell viability and mitochondrial functions.Three significant mechanisms are related to the neuroprotection mediated by snake venom oligopeptides:(1)Activation of the L-arginine metabolite pathway,such as polyamines from ornithine metabolism,which reduces N-methyl-D-aspartate(NMDA)-type glutamate receptor activity;(2)Enhancement of cell viability by activating the nerve growth factor-signaling pathway;and(3)Activation of the Muscarinic acetylcholine receptor subtype M1(mAChR-M1).These small peptides show promise as neuroprotective agents against a variety of neurodegenerative disorders.展开更多
Alternative splicing is the process of producing variably spliced mRNAs by choosing distinct combinations of splice sites within a messenger RNA precursor.This splicing enables mRNA from a single gene to synthesize di...Alternative splicing is the process of producing variably spliced mRNAs by choosing distinct combinations of splice sites within a messenger RNA precursor.This splicing enables mRNA from a single gene to synthesize different proteins,which have different cellular properties and functions and yet arise from the same single gene.A family of splicing factors,Serine-arginine rich proteins,are needed to initiate the assembly and activation of the spliceosome.Serine and arginine rich splicing factor 1,part of the arginine/serine-rich splicing factor protein family,can either activate or inhibit the splicing of mRNAs,depending on the phosphorylation status of the protein and its interaction partners.Considering that serine and arginine rich splicing factor 1 is either an activator or an inhibitor,this protein has been studied widely to identify its various roles in different diseases.Research has found that serine and arginine rich splicing factor 1 is a key target for neuroprotection,showing its promising potential use in therapeutics for neurodegenerative disorders.Furthermore,serine and arginine rich splicing factor 1 might be used to regulate cancer development and autoimmune diseases.In this review,we highlight how serine and arginine rich splicing factor 1 has been studied concerning neuroprotection.In addition,we draw attention to how serine and arginine rich splicing factor 1 is being studied in cancer and immunological disorders,as well as how serine and arginine rich splicing factor 1 acts outside the central or peripheral nervous system.展开更多
Perinatal inflammation is a significant risk factor for lifelong neurodevelopmental impairments such as cerebral palsy.Extensive clinical and preclinical evidence links the severity and pattern of perinatal inflammati...Perinatal inflammation is a significant risk factor for lifelong neurodevelopmental impairments such as cerebral palsy.Extensive clinical and preclinical evidence links the severity and pattern of perinatal inflammation to impaired maturation of white and grey matters and reduced brain growth.Multiple pathways are involved in the pathogenesis of perinatal inflammation.However,studies of human and experimental perinatal encephalopathy have demonstrated a strong causative link between perinatal encephalopathy and excessive production of the pro-inflammatory effector cytokine interleukin-1.In this review,we summarize clinical and preclinical evidence that underpins interleukin-1 as a critical factor in initiating and perpatuating systemic and central nervous system inflammation and subsequent perinatal brain injury.We also highlight the important role of endogenous interleukin-1 receptor antagonist in mitigating interleukin-1-driven neuroinflammation and tissue damage,and summarize outcomes from clinical and mechanistic animal studies that establish the commercially available interleukin-1 receptor antagonist,anakinra,as a safe and effective therapeutic intervention.We reflect on the evidence supporting clinical translation of interleukin-1 receptor antagonist for infants at the greatest risk of perinatal inflammation and impaired neurodevelopment,and suggest a path to advance interleukin-1 receptor antagonist along the translational path for perinatal neuroprotection.展开更多
Neurodegenerative diseases are often associated with the accumulation of oxidative stress and neuroinflammation.Edible bird’s nest(EBN)is a glycoprotein(sialylated mucin glycopeptides)found to be beneficial against n...Neurodegenerative diseases are often associated with the accumulation of oxidative stress and neuroinflammation.Edible bird’s nest(EBN)is a glycoprotein(sialylated mucin glycopeptides)found to be beneficial against neurodegenerative diseases.Antioxidative,anti-inflammatory,and anti-apoptotic properties of EBN in preserving neuronal cells were widely researched using in vitro and in vivo models.Functional effects of EBN are often linked to its great number of antioxidants and anti-inflammatory glycopeptides.Bioactive compounds in EBN,especially sialic acid,add value to neurotrophic potential of EBN and contribute to neuronal repair and protection.Various studies reporting the neuroprotective effects of EBN,their molecular mechanisms,and neuroactive composition were gathered in this review to provide better insights on the neuroprotective effects of EBN.展开更多
Acute neurologic injuries represent a common cause of morbidity and mortality in children presenting to the pediatric intensive care unit.After primary neurologic insults,there may be cerebral brain tissue that remain...Acute neurologic injuries represent a common cause of morbidity and mortality in children presenting to the pediatric intensive care unit.After primary neurologic insults,there may be cerebral brain tissue that remains at risk of secondary insults,which can lead to worsening neurologic injury and unfavorable outcomes.A fundamental goal of pediatric neurocritical care is to mitigate the impact of secondary neurologic injury and improve neurologic outcomes for critically ill children.This review describes the physiologic framework by which strategies in pediatric neurocritical care are designed to reduce the impact of secondary brain injury and improve functional outcomes.Here,we present current and emerging strategies for optimizing neuroprotective strategies in critically ill children.展开更多
目的研究百会穴久留针法通过脑源性神经营养因子(BDNF)/酪氨酸受体激酶B(TrkB)通路改善缺血性脑卒中小鼠神经功能的作用及机制。方法选择雄性C57BL/6J小鼠48只,随机分为假手术1组、模型1组、久留针1组、普通留针组,每组12只。后3组采用...目的研究百会穴久留针法通过脑源性神经营养因子(BDNF)/酪氨酸受体激酶B(TrkB)通路改善缺血性脑卒中小鼠神经功能的作用及机制。方法选择雄性C57BL/6J小鼠48只,随机分为假手术1组、模型1组、久留针1组、普通留针组,每组12只。后3组采用线栓法制备缺血性脑卒中模型,手术造模后第1天起久留针1组和普通留针组分别给予百会穴久留针和普通留针治疗,连续14 d。另选择雄性C57BL/6J小鼠40只,随机分为假手术2组、模型2组、久留针2组、久留针3组,每组10只。后3组采用线栓法制备缺血性脑卒中模型,针灸治疗前分别给予腺相关病毒100μl单次尾静脉注射。采用改良神经功能缺损评分(mNSS)及水迷宫实验的逃避潜伏期、目标象限停留时间、穿越原平台次数评价神经功能。结果与假手术1组比较,模型1组mNSS评分、目标象限停留时间、穿越原平台次数及缺血脑组织BDNF、TrkB表达明显降低,细胞凋亡率及裂解型半胱氨酸天冬氨酸蛋白酶3(Caspase-3)表达明显增加,差异有统计学意义(P<0.05);与模型1组比较,久留针1组和普通留针组mNSS评分、目标象限停留时间、穿越原平台次数及缺血脑组织BDNF、TrkB表达明显增加,细胞凋亡率及裂解型Caspase-3表达明显降低,且久留针1组上述变化较普通留针组更为显著,差异有统计学意义(P<0.05)。与久留针2组比较,久留针3组mNSS评分、目标象限停留时间、穿越原平台次数及缺血脑组织中BDNF表达明显降低(P<0.05),细胞凋亡率及裂解型Caspase-3表达明显增加[(16.41±2.25)%vs(7.59±1.09)%;1.46±0.16 vs 0.94±0.12,P<0.05]。结论百会穴久留针治疗对缺血性脑卒中小鼠神经功能的改善作用更为显著,激活BDNF/TrkB通路是其发挥神经保护作用的相关分子机制。展开更多
基金supported by Notional Institutes of Health Grant,No.1R01NS100710-01A1(to YX)。
文摘Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injury remain limited.Recently,extracellular vesicles released from mesenchymal stem/stromal cells have emerged as a promising novel therapy for traumatic brain injury.Extracellular vesicles are small membrane-bound vesicles that are naturally released by cells,including those in the brain,and can be engineered to contain therapeutic cargo,such as anti-inflammatory molecules,growth factors,and microRNAs.When administered intravenously,extra cellular vesicles can cross the blood-brain barrier and deliver their cargos to the site of injury,where they can be taken up by recipient cells and modulate the inflammatory response,promote neuroregeneration,and improve functional outcomes.In preclinical studies,extracellular vesicle-based therapies have shown promising results in promoting recove ry after traumatic brain injury,including reducing neuronal damage,improving cognitive function,and enhancing motor recovery.While further research is needed to establish the safety and efficacy of extra cellular vesicle-based therapies in humans,extra cellular vesicles represent a promising novel approach for the treatment of traumatic brain injury.In this review,we summarize mesenchymal ste m/stromal cell-de rived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration and brainderived extracellular vesicles as potential biofluid biomarkers in small and large animal models of traumatic brain injury.
基金supported by the National Natural Science Foundation of China(Grant No.U23A20591,52203201,52173149,and 81971174)the Youth Talents Promotion Project of Jilin Province(Grant No.202019)+1 种基金the Science and Technology Development Program of Jilin Province(Grant No.20210101114JC)Research Cooperation Platform Project of Sino-Japanese Friendship Hospital of Jilin University and Basic Medical School of Jilin University(Grant No.KYXZ2022JC04).
文摘Neurological injury caused by ischemic stroke is a major cause of permanent disability and death. The currently available neuroprotective drugs fail to achieve desired therapeutic efficacy mainly due to short circulation half-life and poor blood−brain barrier (BBB) permeability. For that, an edaravone-loaded pH/glutathione (pH/GSH) dual-responsive poly(amino acid) nanogel (NG/EDA) was developed to improve the neuroprotection of EDA. The nanogel was triggered by acidic and EDA-induced high-level GSH microenvironments, which enabled the selective and sustained release of EDA at the site of ischemic injury. NG/EDA exhibited a uniform sub-spherical morphology with a mean hydrodynamic diameter of 112.3 ± 8.2 nm. NG/EDA efficiently accumulated at the cerebral ischemic injury site of permanent middle cerebral artery occlusion (pMCAO) mice, showing an efficient BBB crossing feature. Notably, NG/EDA with 50 µM EDA significantly increased neuron survival (29.3%) following oxygen and glucose deprivation by inhibiting ferroptosis. In addition, administering NG/EDA for 7 d significantly reduced infarct volume to 22.2% ± 7.2% and decreased neurobehavioral scores from 9.0 ± 0.6 to 2.0 ± 0.8. Such a pH/GSH dual-responsive nanoplatform might provide a unique and promising modality for neuroprotection in ischemic stroke and other central nervous system diseases.
基金This work received funding from the State of São Paulo Research Foundation(FAPESP)and the Coordination for the Improvement of Higher Education Personnel(CAPES)under Finance Code 001.
文摘Venom snake-derived peptides have multiple biochemical,pharmacological,and toxicological profiles,allowing for the discovery of new medicinal products and therapeutic applications.This review specifically examines the fundamental elements of neuroprotection offered by different oligopeptides derived from snake venom.It also includes a brief evaluation of short peptides that are being considered as potential therapeutic agents.Proline-rich peptides and tryptophyllin family peptides isolated from the crude venom of Viperidae family snakes,specifically Bothrops atrox,Bothrops jararaca,and Bothrops moojeni,have been shown to have pro-survival properties,the ability to reduce oxidative stress,and the ability to promote cell viability and mitochondrial functions.Three significant mechanisms are related to the neuroprotection mediated by snake venom oligopeptides:(1)Activation of the L-arginine metabolite pathway,such as polyamines from ornithine metabolism,which reduces N-methyl-D-aspartate(NMDA)-type glutamate receptor activity;(2)Enhancement of cell viability by activating the nerve growth factor-signaling pathway;and(3)Activation of the Muscarinic acetylcholine receptor subtype M1(mAChR-M1).These small peptides show promise as neuroprotective agents against a variety of neurodegenerative disorders.
文摘Alternative splicing is the process of producing variably spliced mRNAs by choosing distinct combinations of splice sites within a messenger RNA precursor.This splicing enables mRNA from a single gene to synthesize different proteins,which have different cellular properties and functions and yet arise from the same single gene.A family of splicing factors,Serine-arginine rich proteins,are needed to initiate the assembly and activation of the spliceosome.Serine and arginine rich splicing factor 1,part of the arginine/serine-rich splicing factor protein family,can either activate or inhibit the splicing of mRNAs,depending on the phosphorylation status of the protein and its interaction partners.Considering that serine and arginine rich splicing factor 1 is either an activator or an inhibitor,this protein has been studied widely to identify its various roles in different diseases.Research has found that serine and arginine rich splicing factor 1 is a key target for neuroprotection,showing its promising potential use in therapeutics for neurodegenerative disorders.Furthermore,serine and arginine rich splicing factor 1 might be used to regulate cancer development and autoimmune diseases.In this review,we highlight how serine and arginine rich splicing factor 1 has been studied concerning neuroprotection.In addition,we draw attention to how serine and arginine rich splicing factor 1 is being studied in cancer and immunological disorders,as well as how serine and arginine rich splicing factor 1 acts outside the central or peripheral nervous system.
基金supported by the CJ Martin Postdoctoral Fellowshipgrants from the National Health and Medical Research Council of Australia (1090890 and 1164954)+1 种基金the Cerebral Palsy Alliance, Harold and Cora Brennen Benevolent Trust, Health Research Council of New Zealand (17/601)the Victorian Government’s Operational Infrastructure Support Program (to RG)
文摘Perinatal inflammation is a significant risk factor for lifelong neurodevelopmental impairments such as cerebral palsy.Extensive clinical and preclinical evidence links the severity and pattern of perinatal inflammation to impaired maturation of white and grey matters and reduced brain growth.Multiple pathways are involved in the pathogenesis of perinatal inflammation.However,studies of human and experimental perinatal encephalopathy have demonstrated a strong causative link between perinatal encephalopathy and excessive production of the pro-inflammatory effector cytokine interleukin-1.In this review,we summarize clinical and preclinical evidence that underpins interleukin-1 as a critical factor in initiating and perpatuating systemic and central nervous system inflammation and subsequent perinatal brain injury.We also highlight the important role of endogenous interleukin-1 receptor antagonist in mitigating interleukin-1-driven neuroinflammation and tissue damage,and summarize outcomes from clinical and mechanistic animal studies that establish the commercially available interleukin-1 receptor antagonist,anakinra,as a safe and effective therapeutic intervention.We reflect on the evidence supporting clinical translation of interleukin-1 receptor antagonist for infants at the greatest risk of perinatal inflammation and impaired neurodevelopment,and suggest a path to advance interleukin-1 receptor antagonist along the translational path for perinatal neuroprotection.
基金supported by the Research Excellence Consortium(KKP/2020/UKM-UKM/5/1)provided by Ministry of Higher Education,Malaysiasupported by the Fundamental Research Grant Scheme(FRGS),Project No.FP016-2019A,Reference Code:FRGS/1/2019/SKK09/UM/02/2.
文摘Neurodegenerative diseases are often associated with the accumulation of oxidative stress and neuroinflammation.Edible bird’s nest(EBN)is a glycoprotein(sialylated mucin glycopeptides)found to be beneficial against neurodegenerative diseases.Antioxidative,anti-inflammatory,and anti-apoptotic properties of EBN in preserving neuronal cells were widely researched using in vitro and in vivo models.Functional effects of EBN are often linked to its great number of antioxidants and anti-inflammatory glycopeptides.Bioactive compounds in EBN,especially sialic acid,add value to neurotrophic potential of EBN and contribute to neuronal repair and protection.Various studies reporting the neuroprotective effects of EBN,their molecular mechanisms,and neuroactive composition were gathered in this review to provide better insights on the neuroprotective effects of EBN.
文摘Acute neurologic injuries represent a common cause of morbidity and mortality in children presenting to the pediatric intensive care unit.After primary neurologic insults,there may be cerebral brain tissue that remains at risk of secondary insults,which can lead to worsening neurologic injury and unfavorable outcomes.A fundamental goal of pediatric neurocritical care is to mitigate the impact of secondary neurologic injury and improve neurologic outcomes for critically ill children.This review describes the physiologic framework by which strategies in pediatric neurocritical care are designed to reduce the impact of secondary brain injury and improve functional outcomes.Here,we present current and emerging strategies for optimizing neuroprotective strategies in critically ill children.
文摘目的研究百会穴久留针法通过脑源性神经营养因子(BDNF)/酪氨酸受体激酶B(TrkB)通路改善缺血性脑卒中小鼠神经功能的作用及机制。方法选择雄性C57BL/6J小鼠48只,随机分为假手术1组、模型1组、久留针1组、普通留针组,每组12只。后3组采用线栓法制备缺血性脑卒中模型,手术造模后第1天起久留针1组和普通留针组分别给予百会穴久留针和普通留针治疗,连续14 d。另选择雄性C57BL/6J小鼠40只,随机分为假手术2组、模型2组、久留针2组、久留针3组,每组10只。后3组采用线栓法制备缺血性脑卒中模型,针灸治疗前分别给予腺相关病毒100μl单次尾静脉注射。采用改良神经功能缺损评分(mNSS)及水迷宫实验的逃避潜伏期、目标象限停留时间、穿越原平台次数评价神经功能。结果与假手术1组比较,模型1组mNSS评分、目标象限停留时间、穿越原平台次数及缺血脑组织BDNF、TrkB表达明显降低,细胞凋亡率及裂解型半胱氨酸天冬氨酸蛋白酶3(Caspase-3)表达明显增加,差异有统计学意义(P<0.05);与模型1组比较,久留针1组和普通留针组mNSS评分、目标象限停留时间、穿越原平台次数及缺血脑组织BDNF、TrkB表达明显增加,细胞凋亡率及裂解型Caspase-3表达明显降低,且久留针1组上述变化较普通留针组更为显著,差异有统计学意义(P<0.05)。与久留针2组比较,久留针3组mNSS评分、目标象限停留时间、穿越原平台次数及缺血脑组织中BDNF表达明显降低(P<0.05),细胞凋亡率及裂解型Caspase-3表达明显增加[(16.41±2.25)%vs(7.59±1.09)%;1.46±0.16 vs 0.94±0.12,P<0.05]。结论百会穴久留针治疗对缺血性脑卒中小鼠神经功能的改善作用更为显著,激活BDNF/TrkB通路是其发挥神经保护作用的相关分子机制。