As image-guided navigation plays an important role in neurosurgery, the spatial registration mapping the pre-operative images with the intra-operative patient position becomes crucial for a high accurate surgical outp...As image-guided navigation plays an important role in neurosurgery, the spatial registration mapping the pre-operative images with the intra-operative patient position becomes crucial for a high accurate surgical output. Conventional landmark-based registration requires expensive and time-consuming logistic support.Surface-based registration is a plausible alternative due to its simplicity and efficacy. In this paper, we propose a comprehensive framework for surface-based registration in neurosurgical navigation, where Kinect is used to automatically acquire patient's facial surface in a real time manner. Coherent point drift(CPD) algorithm is employed to register the facial surface with pre-operative images(e.g., computed tomography(CT) or magnetic resonance imaging(MRI)) using a coarse-to-fine scheme. The spatial registration results of 6 volunteers demonstrate that the proposed framework has potential for clinical use.展开更多
基金the National Natural Science Foundation of China(Nos.61190120,61190124 and 61271318)the Biomedical Engineering Fund of Shanghai Jiaotong University(No.YG2012ZD06)
文摘As image-guided navigation plays an important role in neurosurgery, the spatial registration mapping the pre-operative images with the intra-operative patient position becomes crucial for a high accurate surgical output. Conventional landmark-based registration requires expensive and time-consuming logistic support.Surface-based registration is a plausible alternative due to its simplicity and efficacy. In this paper, we propose a comprehensive framework for surface-based registration in neurosurgical navigation, where Kinect is used to automatically acquire patient's facial surface in a real time manner. Coherent point drift(CPD) algorithm is employed to register the facial surface with pre-operative images(e.g., computed tomography(CT) or magnetic resonance imaging(MRI)) using a coarse-to-fine scheme. The spatial registration results of 6 volunteers demonstrate that the proposed framework has potential for clinical use.