期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Establishment of human cerebral organoid systems to model early neural development and assess the central neurotoxicity of environmental toxins
1
作者 Daiyu Hu Yuanqing Cao +6 位作者 Chenglin Cai Guangming Wang Min Zhou Luying Peng Yantao Fan Qiong Lai Zhengliang Gao 《Neural Regeneration Research》 SCIE CAS 2025年第1期242-252,共11页
Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-li... Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies. 展开更多
关键词 cadmium cell death cell proliferation cortical development environmental toxins neural progenitor cells NEUROGENESIS neurotoxicology ORGANOIDS stem cells
下载PDF
Sevoflurane plays a reduced role in cognitive impairment compared with isoflurane: limited effect on fear memory retention 被引量:8
2
作者 Ying Du Xiang-Dan Gong +3 位作者 Xin Fang Fang Xing Tian-Jiao Xia Xiao-Ping Gu 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第1期96-102,共7页
Isoflurane and sevoflurane are both inhalation anesthetics,but in clinical application,sevoflurane has been considered to be less suitable for long-term anesthesia because of its catabolic compounds and potential neph... Isoflurane and sevoflurane are both inhalation anesthetics,but in clinical application,sevoflurane has been considered to be less suitable for long-term anesthesia because of its catabolic compounds and potential nephrotoxicity.Nevertheless,recent studies have shown that these two inhalation anesthetics are similar in hepatorenal toxicity,cost,and long-term anesthetic effect.Moreover,sevoflurane possibly has less cognitive impact on young mice.In this study,C57BL/6 mice aged 8–10 weeks were exposed to 1.2%isoflurane or 2.4%sevoflurane for 6 hours.Cognitive function and memory were examined in young mice using the novel object recognition,contextual fear conditioning,and cued-fear extinction tests.Western blot assay was performed to detect expression levels of D1 dopamine receptor,catechol-O-methyltransferase,phospho-glycogen synthase kinase-3β,and total glycogen synthase kinase-3βin the hippocampus.Our results show that impaired performance was not detected in mice exposed to sevoflurane during the novel object recognition test.Contextual memory impairment in the fear conditioning test was shorter in the sevoflurane group than the isoflurane group.Long-term sevoflurane exposure did not affect memory consolidation,while isoflurane led to memory consolidation and reduced retention.Downregulation of hippocampal D1 dopamine receptors and phosphorylated glycogen synthase kinase-3β/total glycogen synthase kinase-3βand upregulation of catechol-O-methyltransferase may be associated with differing memory performance after exposure to isoflurane or sevoflurane.These results confirm that sevoflurane has less effect on cognitive impairment than isoflurane,which may be related to expression of D1 dopamine receptors and catechol-O-methyltransferase and phosphorylation of glycogen synthase kinase-3βin the hippocampus.This study was approved by the Institutional Animal Care and Use Committee,Nanjing University,China on November 20,2017(approval No.20171102). 展开更多
关键词 CATECHOL-O-METHYLTRANSFERASE cognitive impairment D1 dopamine receptors FEAR memory GLYCOGEN synthase kinase-3β ISOFLURANE neurotoxicology SEVOFLURANE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部