We propose a scheme for realizing a controlled geometric phase gate for two neutral atoms.We apply thestimulated Raman adiabatic passage to transfer atoms from their ground states into Rydberg excited states, and use ...We propose a scheme for realizing a controlled geometric phase gate for two neutral atoms.We apply thestimulated Raman adiabatic passage to transfer atoms from their ground states into Rydberg excited states, and use theRydberg interaction induced energy shifts to generate geometric phase and construct quantum gates.展开更多
The quantum swap gate is one of the most useful gates for quantum computation. Two-qubit entanglement and a controlled-NOT quantum gate in a neutral Rydberg atom system have been achieved in recent experiments. It is ...The quantum swap gate is one of the most useful gates for quantum computation. Two-qubit entanglement and a controlled-NOT quantum gate in a neutral Rydberg atom system have been achieved in recent experiments. It is therefore very interesting to propose a scheme here for swapping a quantum state between two trapped neutral atoms via the Rydberg blockade mechanism. The atoms interact with a sequence of laser pulses without individual addressing. The errors of the swap gate due to imprecision of pulse length, finite Rydberg interaction, and atomic spontaneous emission are discussed.展开更多
A dynamics regime of Rydberg atoms,unselective ground-state blockade(UGSB),is proposed in the context of Rydberg antiblockade(RAB),where the evolution of two atoms is suppressed when they populate in an identical grou...A dynamics regime of Rydberg atoms,unselective ground-state blockade(UGSB),is proposed in the context of Rydberg antiblockade(RAB),where the evolution of two atoms is suppressed when they populate in an identical ground state.UGSB is used to implement a SWAP gate in one step without individual addressing of atoms.Aiming at circumventing common issues in RAB-based gates including atomic decay,Doppler dephasing,and fluctuations in the interatomic coupling strength,we modify the RAB condition to achieve a dynamical SWAP gate whose robustness is much greater than that of the nonadiabatic holonomic one in the conventional RAB regime.In addition,on the basis of the proposed SWAP gates,we further investigate the implementation of a three-atom Fredkin gate by combining Rydberg blockade and RAB.The present work may facilitate to implement the RAB-based gates of strongly coupled atoms in experiment.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.10974028 the Doctoral Foundation of the Ministry of Education of China under Grant No.20093514110009+1 种基金 the Natural Science Foundation of Fujian Province under Grant No.2009J06002Funds from the State Key Laboratory Breeding Base of Photocatalysis,Fuzhou University
文摘We propose a scheme for realizing a controlled geometric phase gate for two neutral atoms.We apply thestimulated Raman adiabatic passage to transfer atoms from their ground states into Rydberg excited states, and use theRydberg interaction induced energy shifts to generate geometric phase and construct quantum gates.
基金supported by the National Natural Science Foundation of China (Grant No. 10974028)the Doctoral Foundation of the Ministry of Education of China (Grant No. 20093514110009)+3 种基金the Natural Science Foundation of Fujian Province of China (Grant No. 2009J06002)the Fund from Fuzhou University (Grant No. 022408)the National Basic Research Program of China (Grant Nos. 2011CB921200 and 2011CBA00200)the China Postdoctoral Science Foundation (Grant No. 20110490828)
文摘The quantum swap gate is one of the most useful gates for quantum computation. Two-qubit entanglement and a controlled-NOT quantum gate in a neutral Rydberg atom system have been achieved in recent experiments. It is therefore very interesting to propose a scheme here for swapping a quantum state between two trapped neutral atoms via the Rydberg blockade mechanism. The atoms interact with a sequence of laser pulses without individual addressing. The errors of the swap gate due to imprecision of pulse length, finite Rydberg interaction, and atomic spontaneous emission are discussed.
基金funding from the National Natural Science Foundation of China(NSFC)(Nos.11675046,21973023,and 11804308)the Program for Innovation Research of Science in Harbin Institute of Technology(No.A201412)+1 种基金the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(No.LBH-Q15060)the Natural Science Foundation of Henan Province under Grant No.202300410481.
文摘A dynamics regime of Rydberg atoms,unselective ground-state blockade(UGSB),is proposed in the context of Rydberg antiblockade(RAB),where the evolution of two atoms is suppressed when they populate in an identical ground state.UGSB is used to implement a SWAP gate in one step without individual addressing of atoms.Aiming at circumventing common issues in RAB-based gates including atomic decay,Doppler dephasing,and fluctuations in the interatomic coupling strength,we modify the RAB condition to achieve a dynamical SWAP gate whose robustness is much greater than that of the nonadiabatic holonomic one in the conventional RAB regime.In addition,on the basis of the proposed SWAP gates,we further investigate the implementation of a three-atom Fredkin gate by combining Rydberg blockade and RAB.The present work may facilitate to implement the RAB-based gates of strongly coupled atoms in experiment.