A predictive calculation is carried out for neutral beam heating of fusion plasmas in EAST by using NUBEAM code under certain plasma conditions. Results calculated are analyzed for different plasma parameters. Relatio...A predictive calculation is carried out for neutral beam heating of fusion plasmas in EAST by using NUBEAM code under certain plasma conditions. Results calculated are analyzed for different plasma parameters. Relations between major plasma parameters, such as density and temperature, are obtained and key physical processes in the neutral beam heating, including beam power deposition, trapped fraction, heating efficiency, and power loss, are simulated. Other physical processes, such as current-drive, toroidal rotation and neutron emission, are also discussed.展开更多
This research applies experimental measurements and NUBEAM,ONETWO and TRANSP modules to investigate the shine-through(ST)loss ratio and beam heating percentage of neutral beam injection on EAST.Measurements and simula...This research applies experimental measurements and NUBEAM,ONETWO and TRANSP modules to investigate the shine-through(ST)loss ratio and beam heating percentage of neutral beam injection on EAST.Measurements and simulations confirm that the ST loss ratio increases linearly with beam energy,and decreases exponentially with plasma density.Moreover,using the multi-step fitting method,we present analytical quantitative expressions of ST loss ratio and beam heating percentage,which are valuable for the high parameter long-pulse experiments of EAST.展开更多
Neutral beam injection (NBI) system with two neutral beam injections will be con- structed on the Experimental Advanced Superconducting Tokamak (EAST) in two stages for high power auxiliary plasmas heating and non...Neutral beam injection (NBI) system with two neutral beam injections will be con- structed on the Experimental Advanced Superconducting Tokamak (EAST) in two stages for high power auxiliary plasmas heating and non-inductive current drive. Each NBI can deliver 2-4 MW beam power with 50-80 keV beam energy in 10-100 s pulse length. Each elements of the NBI system are presented in this contribution.展开更多
基金supported by National Natural Science Foundation of China (Nos.40731056, 10675029, 40605021 and 10575018)the Major State Basic Research Development Program of China (Nos.2009GB107001, 2008CB787103 and 2009GB105004)
文摘A predictive calculation is carried out for neutral beam heating of fusion plasmas in EAST by using NUBEAM code under certain plasma conditions. Results calculated are analyzed for different plasma parameters. Relations between major plasma parameters, such as density and temperature, are obtained and key physical processes in the neutral beam heating, including beam power deposition, trapped fraction, heating efficiency, and power loss, are simulated. Other physical processes, such as current-drive, toroidal rotation and neutron emission, are also discussed.
基金Supported by the Collaborative Innovation Program of Hefei Science Center,CAS (Grant No.2019HSC-CIP015)the National Natural Science Foundation of China (Grant Nos.11875290,1170529,11875253,and 11975276)+2 种基金the Fundamental Research Funds for the Central Universities (Grant No.WK3420000004)the Anhui Provincial Natural Science Foundation (Grant No.2008085J04)the National Key Research and Development Program of China (Grant No.2019YFE03020004)。
文摘This research applies experimental measurements and NUBEAM,ONETWO and TRANSP modules to investigate the shine-through(ST)loss ratio and beam heating percentage of neutral beam injection on EAST.Measurements and simulations confirm that the ST loss ratio increases linearly with beam energy,and decreases exponentially with plasma density.Moreover,using the multi-step fitting method,we present analytical quantitative expressions of ST loss ratio and beam heating percentage,which are valuable for the high parameter long-pulse experiments of EAST.
基金supported by National Natural Science Foundation of China (No. 11075188)the Chinese Academy of Sciences Knowledge Innovation Project: the study of neutral beam steady-state operation of the key technical and physical problems
文摘Neutral beam injection (NBI) system with two neutral beam injections will be con- structed on the Experimental Advanced Superconducting Tokamak (EAST) in two stages for high power auxiliary plasmas heating and non-inductive current drive. Each NBI can deliver 2-4 MW beam power with 50-80 keV beam energy in 10-100 s pulse length. Each elements of the NBI system are presented in this contribution.