Aim To obtain new criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations. Methods By means of Hlder inequality and a method of direct analysis, some i...Aim To obtain new criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations. Methods By means of Hlder inequality and a method of direct analysis, some interesting Lemmas were offered. Results and Conclusion New criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations are established, which extend and improve the results obtained in the literature. Some interesting examples illustrating the importance of our results are also included.展开更多
By using the Riccati transformation and the Cauchy mean inequality, we shall derive some oscillatory criteria for the second order neutral delay difference equationΔ [a nΔ (x n+p nx g(n) )]+q nf(x σ(n) ...By using the Riccati transformation and the Cauchy mean inequality, we shall derive some oscillatory criteria for the second order neutral delay difference equationΔ [a nΔ (x n+p nx g(n) )]+q nf(x σ(n) )=0. These results generalize and improve some known results about both neutral and delay difference equations.展开更多
文摘Aim To obtain new criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations. Methods By means of Hlder inequality and a method of direct analysis, some interesting Lemmas were offered. Results and Conclusion New criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations are established, which extend and improve the results obtained in the literature. Some interesting examples illustrating the importance of our results are also included.
文摘By using the Riccati transformation and the Cauchy mean inequality, we shall derive some oscillatory criteria for the second order neutral delay difference equationΔ [a nΔ (x n+p nx g(n) )]+q nf(x σ(n) )=0. These results generalize and improve some known results about both neutral and delay difference equations.