In this paper, we consider the neutral difference equation△(x n-cx n-m )+p nx n-k =0, n=N, N+1, N+2, …,where c and p n are real numbers, k, m are positive integers with m<k, and △ den...In this paper, we consider the neutral difference equation△(x n-cx n-m )+p nx n-k =0, n=N, N+1, N+2, …,where c and p n are real numbers, k, m are positive integers with m<k, and △ denotes the forward difference operator: △ u n=u n+1 -u n. By using the Krasnoselskii fixed theorem, we obtain some sufficient conditions under which such an equation has a bounded and eventually positive solution which tends to zero as n→∞.展开更多
本文研究了高阶中立型微分方程[x(t)-p(t)x(τ(t))]^(n)+α(t)multiply from i=1 to m|x(δ_i(t))|^(αi)signx(δ_1(t))=0(1)正解的存在性,获得了方程(1)存在正解的充分条件,同时,当n=1时,我们也得到了方程(1)所有解振动的条件.我们的...本文研究了高阶中立型微分方程[x(t)-p(t)x(τ(t))]^(n)+α(t)multiply from i=1 to m|x(δ_i(t))|^(αi)signx(δ_1(t))=0(1)正解的存在性,获得了方程(1)存在正解的充分条件,同时,当n=1时,我们也得到了方程(1)所有解振动的条件.我们的结果推广了一些文献的主要结果.展开更多
文摘In this paper, we consider the neutral difference equation△(x n-cx n-m )+p nx n-k =0, n=N, N+1, N+2, …,where c and p n are real numbers, k, m are positive integers with m<k, and △ denotes the forward difference operator: △ u n=u n+1 -u n. By using the Krasnoselskii fixed theorem, we obtain some sufficient conditions under which such an equation has a bounded and eventually positive solution which tends to zero as n→∞.
文摘本文研究了高阶中立型微分方程[x(t)-p(t)x(τ(t))]^(n)+α(t)multiply from i=1 to m|x(δ_i(t))|^(αi)signx(δ_1(t))=0(1)正解的存在性,获得了方程(1)存在正解的充分条件,同时,当n=1时,我们也得到了方程(1)所有解振动的条件.我们的结果推广了一些文献的主要结果.