The problem of delay-dependent stability and passivity for linear neutral systems is discussed. By constructing a novel type Lyapunov-krasovskii functional, a new delay-dependent passivity criterion is presented in te...The problem of delay-dependent stability and passivity for linear neutral systems is discussed. By constructing a novel type Lyapunov-krasovskii functional, a new delay-dependent passivity criterion is presented in terms of linear matrix inequalities (LMIs). Model transformation, bounding for cross terms and selecting free weighting matrices [12-14] are not required in the arguments. Numerical examples show that the proposed criteria are available and less conservative than existing results .展开更多
This paper focuses on the robust H-infinity reliable control for a class of nonlinear neutral delay systems with uncertainties and actuator failures. We design a state feedback controller in terms of linear matrix ine...This paper focuses on the robust H-infinity reliable control for a class of nonlinear neutral delay systems with uncertainties and actuator failures. We design a state feedback controller in terms of linear matrix inequality(LMI)such that the plant satisfies robust H-infinity performance for all admissible uncertainties, and actuator failures among a prespecified subset of actuators. An example is also given to illustrate the effectiveness of the proposed approach.展开更多
This note concerns the problem of the robust stability of uncertain neutral systems with time-varying delay and saturating actuators. The system considered is continuous in time with norm bounded parametric uncertaint...This note concerns the problem of the robust stability of uncertain neutral systems with time-varying delay and saturating actuators. The system considered is continuous in time with norm bounded parametric uncertainties. By incorporating the free weighing matrix approach developed recently, some new delay-dependent stability conditions in terms of linear matrix inequalities (LMIs) with some tuning parameters are obtained. An estimate of the domain of attraction of the closed-loop system under a priori designed controller is proposed. The approach is based on a polytopic description of the actuator saturation nonlinearities and the Lyapunov- Krasovskii method. Numerical examples are used to demonstrate the effectiveness of the proposed design method.展开更多
This paper deals with the some oscillation criteria for the two-dimensional neutral delay difference system of the form . Examples illustrating the results are inserted.
Asymptotic stability of linear and interval linear fractional-order neutral delay differential systems described by the Caputo-Fabrizio (CF) fractional derivatives is investigated. Using Laplace transform, a novel cha...Asymptotic stability of linear and interval linear fractional-order neutral delay differential systems described by the Caputo-Fabrizio (CF) fractional derivatives is investigated. Using Laplace transform, a novel characteristic equation is derived. Stability criteria are established based on an algebraic approach and norm-based criteria are also presented. It is shown that asymptotic stability is ensured for linear fractional-order neutral delay differential systems provided that the underlying stability criterion holds for any delay parameter. In addition, sufficient conditions are derived to ensure the asymptotic stability of interval linear fractional order neutral delay differential systems. Examples are provided to illustrate the effectiveness and applicability of the theoretical results.展开更多
This paper is concerned with the issue of stabilization for the linear neutral systems with mixed delays. The attention is focused on the design of output feedback controllers which guarantee the asymptotical stabilit...This paper is concerned with the issue of stabilization for the linear neutral systems with mixed delays. The attention is focused on the design of output feedback controllers which guarantee the asymptotical stability of the closed-loop systems. Based on the model transformation of neutral type, the Lyapunov-Krasovskii functional method is employed to establish the delay-dependent stability criterion. Then, through the controller parameterization and some matrix transformation techniques, the desired parameters are determined under the delay-dependent design condition in terms of linear matrix inequalities (LMIs), and the desired controller is explicitly formulated. A numerical example is given to illustrate the effectiveness of the proposed method.展开更多
This paper investigates the problem of delay-dependent robust stability analysis for a class of neutral systems with interval time-varying delays and nonlinear perturbations. Such nonlinear perturbations are with time...This paper investigates the problem of delay-dependent robust stability analysis for a class of neutral systems with interval time-varying delays and nonlinear perturbations. Such nonlinear perturbations are with time-varying but norm-bounded characteristics. Based on a new Lyapunov-Krasovskii functional, together ,sith a free-weighting matrices technique, improved delay-dependent stability criteria are established. It is shown that less conservative results can be obtained in terms of linear matrix inequalities (LMIs). Numerical examples are provided to demonstrate the effectiveness and less conservatism of the proposed approach.展开更多
This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A no...This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A novel scheme,viewing the interconnections with time-varying delays as effective information but not disturbances,is developed.Based on Lyapunov stability theory,using various techniques of decomposing and magnifying matrices,a design method of the non-fragile decentralized guaranteed cost controller for unperturbed neutral large-scale interconnected systems is proposed and the guaranteed cost is presented.The further results are derived for the uncertain case from the criterion of unperturbed neutral large-scale interconnected systems.Finally,an illustrative example shows that the results are significantly better than the existing results in the literatures.展开更多
This paper considers the asymptotic stability of linear multistep(LM)methods for neutral systems with distributed delays.In particular,several sufficient conditions for delay-dependent stability of numerical solutions...This paper considers the asymptotic stability of linear multistep(LM)methods for neutral systems with distributed delays.In particular,several sufficient conditions for delay-dependent stability of numerical solutions are obtained based on the argument principle.Compound quadrature formulae are used to compute the integrals.An algorithm is proposed to examine the delay-dependent stability of numerical solutions.Several numerical examples are performed to verify the theoretical results.展开更多
The problem of delay-dependent robust stability for uncertain linear singular neutral systems with time-varying and distributed delays is investigated. The uncertainties under consideration are norm bounded,and possib...The problem of delay-dependent robust stability for uncertain linear singular neutral systems with time-varying and distributed delays is investigated. The uncertainties under consideration are norm bounded,and possibly time varying. Some new stability criteria,which are simpler and less conservative than existing results,are derived based on a new class of Lyapunov-Krasovskii functionals combined with the descriptor model transformation and the decomposition technique of coeffcient matrix and formulated in...展开更多
This paper concerns the stability and robust stability criteria for degenerate neu-tral systems with mixed time-varying delays. A method based on the stability of a new operator D and the linear matrix inequalities is...This paper concerns the stability and robust stability criteria for degenerate neu-tral systems with mixed time-varying delays. A method based on the stability of a new operator D and the linear matrix inequalities is presented that makes it easy to calculate both the upper stability bounds and the free weighting matrices. Since the criteria take the time-varying delays and degenerate neutral systems into account, they are less conservative than previous methods. The Matlab LMI toolbox illustrates the impro...展开更多
This note deals with stabilization of uncertain linear neutral delay systems. A new stabilization scheme is presented. Using new Lyapunov-Krasovskii functionals, less conservative stabilization conditions are derived ...This note deals with stabilization of uncertain linear neutral delay systems. A new stabilization scheme is presented. Using new Lyapunov-Krasovskii functionals, less conservative stabilization conditions are derived for such systems based on linear matrix inequalities (LMI). The results are illustrated using a numerical example.展开更多
In this paper,the all-delay stability of degenerate differential systems with delay is discussed.We come up with some new criteria for evaluating the all-delay stability of degenerate differential systems with delay a...In this paper,the all-delay stability of degenerate differential systems with delay is discussed.We come up with some new criteria for evaluating the all-delay stability of degenerate differential systems with delay and degenerate neutral differential systems with delay.Also,we give an example to illustrate the main results.展开更多
This paper is devoted to investigating the dynamic output feedback(DOF)control problem of Markovian jump neutral-type stochastic systems with a guaranteed cost function.Both of the state and measurement equations cont...This paper is devoted to investigating the dynamic output feedback(DOF)control problem of Markovian jump neutral-type stochastic systems with a guaranteed cost function.Both of the state and measurement equations contain time delays.Mode-dependent DOF controllers are first designed such that the closed-loop system is asymptotically stable in mean-square and an adequate performance level of this system is guaranteed.Then,sufficient conditions for the solvability of this problem are derived in the form of linear matrix inequalities(LMIs).A numerical example is presented to reveal the effectiveness of our findings.展开更多
This paper is mainly concerned with the existence of mild solutions to a first order impulsive neutral evolution differential equations with state-dependent delay. By suitable fixed point theorems combined with theori...This paper is mainly concerned with the existence of mild solutions to a first order impulsive neutral evolution differential equations with state-dependent delay. By suitable fixed point theorems combined with theories of evolution systems,we prove some existence theorems. As an application,an example is also given to illustrate the obtained results.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.60474003).
文摘The problem of delay-dependent stability and passivity for linear neutral systems is discussed. By constructing a novel type Lyapunov-krasovskii functional, a new delay-dependent passivity criterion is presented in terms of linear matrix inequalities (LMIs). Model transformation, bounding for cross terms and selecting free weighting matrices [12-14] are not required in the arguments. Numerical examples show that the proposed criteria are available and less conservative than existing results .
基金This work was supported by the National Natural Science Foundation of China (No. 60274009)the SRFDP (No. 20020145007)the Natural Science Foundation of Liaoning Province (No.20032020).
文摘This paper focuses on the robust H-infinity reliable control for a class of nonlinear neutral delay systems with uncertainties and actuator failures. We design a state feedback controller in terms of linear matrix inequality(LMI)such that the plant satisfies robust H-infinity performance for all admissible uncertainties, and actuator failures among a prespecified subset of actuators. An example is also given to illustrate the effectiveness of the proposed approach.
文摘This note concerns the problem of the robust stability of uncertain neutral systems with time-varying delay and saturating actuators. The system considered is continuous in time with norm bounded parametric uncertainties. By incorporating the free weighing matrix approach developed recently, some new delay-dependent stability conditions in terms of linear matrix inequalities (LMIs) with some tuning parameters are obtained. An estimate of the domain of attraction of the closed-loop system under a priori designed controller is proposed. The approach is based on a polytopic description of the actuator saturation nonlinearities and the Lyapunov- Krasovskii method. Numerical examples are used to demonstrate the effectiveness of the proposed design method.
文摘This paper deals with the some oscillation criteria for the two-dimensional neutral delay difference system of the form . Examples illustrating the results are inserted.
文摘Asymptotic stability of linear and interval linear fractional-order neutral delay differential systems described by the Caputo-Fabrizio (CF) fractional derivatives is investigated. Using Laplace transform, a novel characteristic equation is derived. Stability criteria are established based on an algebraic approach and norm-based criteria are also presented. It is shown that asymptotic stability is ensured for linear fractional-order neutral delay differential systems provided that the underlying stability criterion holds for any delay parameter. In addition, sufficient conditions are derived to ensure the asymptotic stability of interval linear fractional order neutral delay differential systems. Examples are provided to illustrate the effectiveness and applicability of the theoretical results.
基金the National Natural Science Foundation of China (No. 50708094)the Hi-Tech Research and Development Program (863) of China (No. 2007AA11Z216)
文摘This paper is concerned with the issue of stabilization for the linear neutral systems with mixed delays. The attention is focused on the design of output feedback controllers which guarantee the asymptotical stability of the closed-loop systems. Based on the model transformation of neutral type, the Lyapunov-Krasovskii functional method is employed to establish the delay-dependent stability criterion. Then, through the controller parameterization and some matrix transformation techniques, the desired parameters are determined under the delay-dependent design condition in terms of linear matrix inequalities (LMIs), and the desired controller is explicitly formulated. A numerical example is given to illustrate the effectiveness of the proposed method.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61004038)
文摘This paper investigates the problem of delay-dependent robust stability analysis for a class of neutral systems with interval time-varying delays and nonlinear perturbations. Such nonlinear perturbations are with time-varying but norm-bounded characteristics. Based on a new Lyapunov-Krasovskii functional, together ,sith a free-weighting matrices technique, improved delay-dependent stability criteria are established. It is shown that less conservative results can be obtained in terms of linear matrix inequalities (LMIs). Numerical examples are provided to demonstrate the effectiveness and less conservatism of the proposed approach.
基金supported by the National Natural Science Foundation of China(6057401160972164+1 种基金60904101)the Scientific Research Fund of Liaoning Provincial Education Department(2009A544)
文摘This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A novel scheme,viewing the interconnections with time-varying delays as effective information but not disturbances,is developed.Based on Lyapunov stability theory,using various techniques of decomposing and magnifying matrices,a design method of the non-fragile decentralized guaranteed cost controller for unperturbed neutral large-scale interconnected systems is proposed and the guaranteed cost is presented.The further results are derived for the uncertain case from the criterion of unperturbed neutral large-scale interconnected systems.Finally,an illustrative example shows that the results are significantly better than the existing results in the literatures.
基金supported by the National Natural Science Foundation of China(No.11971303).
文摘This paper considers the asymptotic stability of linear multistep(LM)methods for neutral systems with distributed delays.In particular,several sufficient conditions for delay-dependent stability of numerical solutions are obtained based on the argument principle.Compound quadrature formulae are used to compute the integrals.An algorithm is proposed to examine the delay-dependent stability of numerical solutions.Several numerical examples are performed to verify the theoretical results.
基金Supported by the National Natural Science Foundation of China (10771001)the Key Program of Ministry of Education of China (205068)the Foundation of Innovation Team of Anhui Univ
文摘The problem of delay-dependent robust stability for uncertain linear singular neutral systems with time-varying and distributed delays is investigated. The uncertainties under consideration are norm bounded,and possibly time varying. Some new stability criteria,which are simpler and less conservative than existing results,are derived based on a new class of Lyapunov-Krasovskii functionals combined with the descriptor model transformation and the decomposition technique of coeffcient matrix and formulated in...
基金supported by the National Natural Science Foundation of China(No10771001)the Key Program of Ministry of Education of China (No205068)the Program of Innovation Team of University of Anhui
文摘This paper concerns the stability and robust stability criteria for degenerate neu-tral systems with mixed time-varying delays. A method based on the stability of a new operator D and the linear matrix inequalities is presented that makes it easy to calculate both the upper stability bounds and the free weighting matrices. Since the criteria take the time-varying delays and degenerate neutral systems into account, they are less conservative than previous methods. The Matlab LMI toolbox illustrates the impro...
文摘This note deals with stabilization of uncertain linear neutral delay systems. A new stabilization scheme is presented. Using new Lyapunov-Krasovskii functionals, less conservative stabilization conditions are derived for such systems based on linear matrix inequalities (LMI). The results are illustrated using a numerical example.
基金Supported by the National Natural Science Foundation of China (10771001)the Key Program of Ministry of Education of China(205068)+1 种基金the Foundation of Education Department of Anhui Province (KJ2008B152)the Foundation of Innovation Group of Anhui University.
文摘In this paper,the all-delay stability of degenerate differential systems with delay is discussed.We come up with some new criteria for evaluating the all-delay stability of degenerate differential systems with delay and degenerate neutral differential systems with delay.Also,we give an example to illustrate the main results.
基金supported by the National Natural Science Foundation of China under Grant Nos.61703226and 71961002Startup Project of Doctor Scientific Research of Guangxi University of Finance and Economics BS 2019002。
文摘This paper is devoted to investigating the dynamic output feedback(DOF)control problem of Markovian jump neutral-type stochastic systems with a guaranteed cost function.Both of the state and measurement equations contain time delays.Mode-dependent DOF controllers are first designed such that the closed-loop system is asymptotically stable in mean-square and an adequate performance level of this system is guaranteed.Then,sufficient conditions for the solvability of this problem are derived in the form of linear matrix inequalities(LMIs).A numerical example is presented to reveal the effectiveness of our findings.
基金Supported by NNSF of China (10901075)the Key Project of Chinese Ministry of Education (210226)+1 种基金the Scientific Research Fund of Gansu Provincial Education Department (0804-08)"Qing Lan" Talent Engineering Funds (QL-05-16A) by Lanzhou Jiaotong University
文摘This paper is mainly concerned with the existence of mild solutions to a first order impulsive neutral evolution differential equations with state-dependent delay. By suitable fixed point theorems combined with theories of evolution systems,we prove some existence theorems. As an application,an example is also given to illustrate the obtained results.