This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several differen...This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several different techniques to investigate stability. To show our idea clearly, we examine neutral stochastic delay differential equations with unbounded delay and linear neutral stochastic Volterra unbounded-delay-integro-differential equations.展开更多
The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equa...The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equations with Markovian switching.The aim of this article is to close this gap.The authors establish Razumikhin-type theorem of the neutral stochastic functional differential equations with Markovian switching,and those without Markovian switching.展开更多
The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-s...The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-spaces.展开更多
The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equa...The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equations with Markovian switching.The aim of this article is to close this gap.The authors establish Razumikhin-type theorem of the neutral stochastic functional differential equations with Markovian switching,and those without Markovian switching.展开更多
By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(...By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(t)N′(t-τ(t))].展开更多
In this paper, sane sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with ...Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with distributed and discrete delays are obtained. Moreover,we construct an example to illustrate the feasibility of our results.展开更多
In this article, we investigate the density of the solution to a class of stochastic functional differential equations by means of Malliavin calculus. Our aim is to provide upper and lower Gaussian estimates for the d...In this article, we investigate the density of the solution to a class of stochastic functional differential equations by means of Malliavin calculus. Our aim is to provide upper and lower Gaussian estimates for the density.展开更多
The asymptotic and stable properties of general stochastic functional differential equations are investigated by the multiple Lyapunov function method, which admits non-negative up-per bounds for the stochastic deriva...The asymptotic and stable properties of general stochastic functional differential equations are investigated by the multiple Lyapunov function method, which admits non-negative up-per bounds for the stochastic derivatives of the Lyapunov functions, a theorem for asymptotic properties of the LaSal e-type described by limit sets of the solutions of the equations is obtained. Based on the asymptotic properties to the limit set, a theorem of asymptotic stability of the stochastic functional differential equations is also established, which enables us to construct the Lyapunov functions more easily in application. Particularly, the wel-known classical theorem on stochastic stability is a special case of our result, the operator LV is not required to be negative which is more general to fulfil and the stochastic perturbation plays an important role in it. These show clearly the improvement of the traditional method to find the Lyapunov functions. A numerical simulation example is given to il ustrate the usage of the method.展开更多
Asymptotic characteristic of solution of the stochastic functional differential equation was discussed and sufficient condition was established by multiple Lyapunov functions for locating the limit set of the solution...Asymptotic characteristic of solution of the stochastic functional differential equation was discussed and sufficient condition was established by multiple Lyapunov functions for locating the limit set of the solution. Moreover, from them many effective criteria on stochastic asymptotic stability, which enable us to construct the Lyapunov functions much more easily in application, were obtained, The results show that the wellknown classical theorem on stochastic asymptotic stability is a special case of our more general results. In the end, application in stochastic Hopfield neural networks is given to verify our results.展开更多
In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and D...In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and Dirichlet's boundary value conditions.展开更多
In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish...In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish oscillation in terms of related functional differential inequallities.展开更多
This paper is to obtain sufficient conditions under which the neutral functional differential equation d/dx[x(t) + integral(c)(t) x(s)d(s) mu(t, s)] + integral(c)(t) f(t, x(s))d(s) eta(t, s) = 0, t greater than or equ...This paper is to obtain sufficient conditions under which the neutral functional differential equation d/dx[x(t) + integral(c)(t) x(s)d(s) mu(t, s)] + integral(c)(t) f(t, x(s))d(s) eta(t, s) = 0, t greater than or equal to t(0) greater than or equal to c (1) has a positive solution on [c, +infinity). Some results in [1] are generalized. Then we apply our results to functional differential equations of special form and obtain sufficient conditions for those equations to have a positive solution.展开更多
This paper discusses the pth moment stability of neutral stochastic differential equations with multiple variable delays. The equation has a much more general form than the neutral stochastic differential equations wi...This paper discusses the pth moment stability of neutral stochastic differential equations with multiple variable delays. The equation has a much more general form than the neutral stochastic differential equations with delay. A new kind of φ-function is introduced to address the stability, which is more general than the exponential stability and polynomial stability. Using a specific Lyapunov function, a stability criteria for the neutral stochastic differential equations with multiple variable delays is established, by which it is relatively easy to verify the stability of such equations. Finally, the proposed theories are illustrated by two examples.展开更多
In this paper, we consider a class of Sobolev-type fractional neutral stochastic differential equations driven by fractional Brownian motion with infinite delay in a Hilbert space. When α>1-H, by the ...In this paper, we consider a class of Sobolev-type fractional neutral stochastic differential equations driven by fractional Brownian motion with infinite delay in a Hilbert space. When α>1-H, by the technique of Sadovskii’s fixed point theorem, stochastic calculus and the methods adopted directly from deterministic control problems, we study the approximate controllability of the stochastic system.展开更多
This paper discusses a linear neutral stochastic differential equation with variable delays. By using fixed point theory, the necessary and sufficient conditions are given to ensure that the trivial solution to such a...This paper discusses a linear neutral stochastic differential equation with variable delays. By using fixed point theory, the necessary and sufficient conditions are given to ensure that the trivial solution to such an equation is pth moment asymptotically stable. These conditions do not require the boundedness of delays, nor derivation of delays. An example was also given for illustration.展开更多
In this paper, some sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment ...This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment exponential stability conditions are given. Finally, one example is presented to illustrate our theory.展开更多
This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained b...This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.展开更多
This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information avail...This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed.展开更多
基金Supported by NSFC (11001091)Chinese UniversityResearch Foundation (2010MS129)
文摘This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several different techniques to investigate stability. To show our idea clearly, we examine neutral stochastic delay differential equations with unbounded delay and linear neutral stochastic Volterra unbounded-delay-integro-differential equations.
基金Sponsored by HUST Foundation(0125011017)the National NSFC under grant(70671047)
文摘The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equations with Markovian switching.The aim of this article is to close this gap.The authors establish Razumikhin-type theorem of the neutral stochastic functional differential equations with Markovian switching,and those without Markovian switching.
文摘The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-spaces.
基金Sponsored by HUST Foundation(0125011017) the National NSFC under grant(70671047)
文摘The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equations with Markovian switching.The aim of this article is to close this gap.The authors establish Razumikhin-type theorem of the neutral stochastic functional differential equations with Markovian switching,and those without Markovian switching.
基金National Natural Science Foundation of China( 198710 0 5 )
文摘By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(t)N′(t-τ(t))].
文摘In this paper, sane sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
基金Supported by the National Natural Science Foundation of China(11071001)Supported by the NSF of Education Bureau of Anhui Province(KJ2009A005Z,KJ2010ZD02,2010SQRL159)+1 种基金Supported by the 211 Project of Anhui University(KJTD002B)Supported by the Natural Science Foundation of Anhui Province(1208085MA13)
文摘Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with distributed and discrete delays are obtained. Moreover,we construct an example to illustrate the feasibility of our results.
基金supported by Viet Nam National Foundation for Science and Technology Development(NAFOSTED) under grant number 101.03-2015.15supported by the Vietnam National University,Hanoi(QG.16.09)
文摘In this article, we investigate the density of the solution to a class of stochastic functional differential equations by means of Malliavin calculus. Our aim is to provide upper and lower Gaussian estimates for the density.
基金supported by the National Natural Science Foundation of China(61273126)the Natural Science Foundation of Guangdong Province(10251064101000008+1 种基金S201210009675)the Fundamental Research Funds for the Central Universities(2012ZM0059)
文摘The asymptotic and stable properties of general stochastic functional differential equations are investigated by the multiple Lyapunov function method, which admits non-negative up-per bounds for the stochastic derivatives of the Lyapunov functions, a theorem for asymptotic properties of the LaSal e-type described by limit sets of the solutions of the equations is obtained. Based on the asymptotic properties to the limit set, a theorem of asymptotic stability of the stochastic functional differential equations is also established, which enables us to construct the Lyapunov functions more easily in application. Particularly, the wel-known classical theorem on stochastic stability is a special case of our result, the operator LV is not required to be negative which is more general to fulfil and the stochastic perturbation plays an important role in it. These show clearly the improvement of the traditional method to find the Lyapunov functions. A numerical simulation example is given to il ustrate the usage of the method.
基金Project supported by the National Natural Science Foundation of China (Nos.60574025, 60074008)the Natural Science Foundation of Hubei Province of China (No.2004ABA055)
文摘Asymptotic characteristic of solution of the stochastic functional differential equation was discussed and sufficient condition was established by multiple Lyapunov functions for locating the limit set of the solution. Moreover, from them many effective criteria on stochastic asymptotic stability, which enable us to construct the Lyapunov functions much more easily in application, were obtained, The results show that the wellknown classical theorem on stochastic asymptotic stability is a special case of our more general results. In the end, application in stochastic Hopfield neural networks is given to verify our results.
基金the Natural Science Foundation of Hunan Province(10471086)the Science Research Foundation of Administration of Education of Hunan Province(07C164)
文摘In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and Dirichlet's boundary value conditions.
文摘In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish oscillation in terms of related functional differential inequallities.
文摘This paper is to obtain sufficient conditions under which the neutral functional differential equation d/dx[x(t) + integral(c)(t) x(s)d(s) mu(t, s)] + integral(c)(t) f(t, x(s))d(s) eta(t, s) = 0, t greater than or equal to t(0) greater than or equal to c (1) has a positive solution on [c, +infinity). Some results in [1] are generalized. Then we apply our results to functional differential equations of special form and obtain sufficient conditions for those equations to have a positive solution.
基金The National Natural Science Foundation of China (No.10671078)
文摘This paper discusses the pth moment stability of neutral stochastic differential equations with multiple variable delays. The equation has a much more general form than the neutral stochastic differential equations with delay. A new kind of φ-function is introduced to address the stability, which is more general than the exponential stability and polynomial stability. Using a specific Lyapunov function, a stability criteria for the neutral stochastic differential equations with multiple variable delays is established, by which it is relatively easy to verify the stability of such equations. Finally, the proposed theories are illustrated by two examples.
文摘In this paper, we consider a class of Sobolev-type fractional neutral stochastic differential equations driven by fractional Brownian motion with infinite delay in a Hilbert space. When α>1-H, by the technique of Sadovskii’s fixed point theorem, stochastic calculus and the methods adopted directly from deterministic control problems, we study the approximate controllability of the stochastic system.
基金The National Natural Science Foundation of China (No.10671078)
文摘This paper discusses a linear neutral stochastic differential equation with variable delays. By using fixed point theory, the necessary and sufficient conditions are given to ensure that the trivial solution to such an equation is pth moment asymptotically stable. These conditions do not require the boundedness of delays, nor derivation of delays. An example was also given for illustration.
文摘In this paper, some sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
文摘This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment exponential stability conditions are given. Finally, one example is presented to illustrate our theory.
基金supported by Ministry of Human Resource and Development(MHR-02-23-200-429/304)
文摘This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.
文摘This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed.