This paper proposes a novel SVPWM (space vector pulse width modulation) strategy for the three-level neutral-point-clamped voltage source inverter, based on the particular disposition of all the redundant voltage ve...This paper proposes a novel SVPWM (space vector pulse width modulation) strategy for the three-level neutral-point-clamped voltage source inverter, based on the particular disposition of all the redundant voltage vectors. The new modulation approach shows superior performance for harmonic voltage and balancing control of neutral-point potential compared to the popular eight-stage centered SVPWM. It realizes suppression of inverter neutral-point potential variation by accurately modifying redundant factor of small vectors pairs, only requiring information of DC-link capacitor voltages and three-phase load currents. This is convenient to apply and is compatible of digital computer realization. Feasibility of the proposed control approach is verified by simulation and experimental results.展开更多
Potential (non-nuclear) energy stored in reactor facility coolant is a crucial factor determining the NPP safety/hazard characteristics as it is inherent property of the material and cannot be changed. Enhancing safet...Potential (non-nuclear) energy stored in reactor facility coolant is a crucial factor determining the NPP safety/hazard characteristics as it is inherent property of the material and cannot be changed. Enhancing safety of the NPP with traditional type reactor facilities, in which potential energy is stored in large quantities, requires buildup of the number of safety systems and in-depth defense barriers, which reduce the probability of severe accidents (but do not exclude the opportunity of their realization) and seriousness of their consequences. Keeping the risk of radioactivity release for different type reactor facilities at a same level of social acceptability, the number of safety systems and in-depth defense barriers, which determine essentially the NPP economical parameters, can be reduced with diminishing the potential energy stored in the reactor facility. To analyze the effect of potential energy on reactor facility safety/hazard, a diagram of reactor facility hazard has been proposed. It presents a probability of radioactivity release as a function of radioactivity release values for reactor facilities with identical radiation potential, which differ by values of potential energy stored in coolant. It is proposed to account NPP safety/hazard effect on economics by adding a certain interest on the electricity cost for making payments in a special insurance fund assigned to compensate the expenses for elimination of consequences of a possible accident.展开更多
The topology of diode neutral-point-clamped(NPC)three-level inverter is prone to neutral-point potential offset.When the sum of three-phase current is zero,the virtual space vector pulse width modulation(VSVPWM)scheme...The topology of diode neutral-point-clamped(NPC)three-level inverter is prone to neutral-point potential offset.When the sum of three-phase current is zero,the virtual space vector pulse width modulation(VSVPWM)scheme does not cause the neutral-point voltage offset,but it lacks the ability to balance the deviation.For this reason,a neutral-point potential control strategy combining virtual space vector modulation and loop width control is proposed.The neutral-point potential is balanced by introducing the distribution factor for the regions with redundant vectors.For other regions,the potential is controlled by selecting a suitable switching sequence.Meanwhile,the effect on the virtual vector modulation is reduced within the loop width by setting an appropriate loop width,thereby improving the balance effect.The simulation results show that the proposed method has a strong ability to control the offset and has excellent potential balance performance under the conditions of balanced load,unbalanced load and asymmetric capacitance parameters.展开更多
The output current harmonic distortion of a three-level inverter is less than the traditional twolevel inverter.The voltage stress of the semiconductor switch is low.A neutral point potential drift control method is p...The output current harmonic distortion of a three-level inverter is less than the traditional twolevel inverter.The voltage stress of the semiconductor switch is low.A neutral point potential drift control method is proposed to solve the problem of the neutral point potential drift of the three-level inverter.The interaction mechanism between the neutral point potential and the space voltage vector is presented.The small vector output by the inverter is found to be the root cause of the midpoint potential drift.It is found that the fluctuation of the midpoint potential could be suppressed by increasing the capacitance value of the inverter bus voltage stabilizing capacitor.Furthermore,it inhibits the fluctuation of the midpoint potential.The experimental results verify the efficiency and precision of the proposed method.展开更多
Net Primary Productivity (NPP) is an important parameter, which is closely connected with global climate change, the global carbon balance and cycle. The study of climate- vegetation interaction is the basis for res...Net Primary Productivity (NPP) is an important parameter, which is closely connected with global climate change, the global carbon balance and cycle. The study of climate- vegetation interaction is the basis for research on the responses of terrestrial ecosystemto global change and mainly comprises two important components: climate vegetation classification and the NPP of the natural vegetation. Comparing NPP estimated from the classification indices-based model with NPP derived from measurements at 3767 sites in China indicated that the classification indices-based model was capable of estimating large scale NPP. Annual cumulative temperature above 0~C and a moisture index, two main factors affecting NPP, were spatially plotted with the ArcGIS grid tool based on measured data in 2348 meteorological stations from 1961 to 2006. The distribution of NPP for potential vegetation classes under present climate conditions was simulated by the classification indices-based model. The model estimated the total NPP of potential terrestrial vegetation of China to fluctuate between 1.93 and 4.54 Pg C year-1. It pro- vides a reliable means for scaling-up from site to regional scales, and the findings could potentially favor China's position in reducing global warming gases as outlined in the Kyoto Protocol in order to fulfill China's commitment of reducing greenhouse gases.展开更多
三相三电平VIENNA整流器作为三电平Boost型中点箝位(neutral point clamped,NPC)结构变换器一种,具有电路结构简单、开关电压应力小、输入电流谐波含量低、可实现输入单位功率因数校正等优点,适合应用于高压中大功率场合。同时,三相功...三相三电平VIENNA整流器作为三电平Boost型中点箝位(neutral point clamped,NPC)结构变换器一种,具有电路结构简单、开关电压应力小、输入电流谐波含量低、可实现输入单位功率因数校正等优点,适合应用于高压中大功率场合。同时,三相功率因数校正(power factor correction,PFC)整流器的单周期控制方案因其控制简单,无需乘法器及采用输入电压受到广泛研究。输出中点电位波动是NPC结构变换器的一个固有问题,以基于单周期控制的三相三电平VIENNA整流器为研究对象,详细地分析整流器输出中点电位波动机理,根据单周期控制方案的特点,提出在三相输入电流采样中注入三次谐波电流分量,同时分析三次谐波电流注入后对整流器输出中点电位的影响,给出三次谐波电流最佳注入系数。在此基础之上,向传统单周期控制系统中继续引入均压环路,使得最终改进后的三相三电平VIENNA整流器单周期控制系统一方面可以提高整流器直流母线电压利用率,另一方面可以有效抑制中点电位的直流和交流波动。仿真与实验验证了所提出的改进单周期控制策略对于整流器输出中点电位平衡控制的有效性。展开更多
利用2010年白银区春小麦生长季(4—7月)空间分辨率为250 m的MODIS影像和气象站点的气象数据,通过CASA模型建立了基于MODIS数据的春小麦净初级生产力遥感估算模型,估算出白银区春小麦生长季的净初级生产力(NPP),通过春小麦NPP与干物质转...利用2010年白银区春小麦生长季(4—7月)空间分辨率为250 m的MODIS影像和气象站点的气象数据,通过CASA模型建立了基于MODIS数据的春小麦净初级生产力遥感估算模型,估算出白银区春小麦生长季的净初级生产力(NPP),通过春小麦NPP与干物质转换关系计算出春小麦生产潜力。结果表明:白银区南部春小麦的NPP和生产潜力均大于北部地区,其NPP最小值为42 g C·m-2·a-1,最大值为402 g C·m-2·a-1,且春小麦的生产潜力有明显的季节性规律。根据春小麦生产潜力与实际产量的拟合关系建立了产量估测模型,并对该模型做了精度验证与实用性评价,结果显示该估产模型均方根误差RMSE为76.33 g·m-2,相对均方根误差RMSEr为23.51%。展开更多
三相VIENNA整流器作为三电平Boost型中点箝位NPC(neutral point clamped)结构变换器,其具有所需开关器件少、功率因数高、开关管电压应力小和控制环节简单等特点,具有较高的研究价值。而中点电位波动是NPC结构变换器固有的问题,以单周...三相VIENNA整流器作为三电平Boost型中点箝位NPC(neutral point clamped)结构变换器,其具有所需开关器件少、功率因数高、开关管电压应力小和控制环节简单等特点,具有较高的研究价值。而中点电位波动是NPC结构变换器固有的问题,以单周期控制的三相VIENNA整流器作为研究对象。对其直流母线电压利用率较低和中点电压交流波动的问题进行建模分析,提出了在单周期控制基础上加入中点电压平衡控制环,不仅可以基本消除中点电压波动,而且可以提高直流母线电压利用率。最后通过仿真验证了所提控制策略的正确性。展开更多
文摘This paper proposes a novel SVPWM (space vector pulse width modulation) strategy for the three-level neutral-point-clamped voltage source inverter, based on the particular disposition of all the redundant voltage vectors. The new modulation approach shows superior performance for harmonic voltage and balancing control of neutral-point potential compared to the popular eight-stage centered SVPWM. It realizes suppression of inverter neutral-point potential variation by accurately modifying redundant factor of small vectors pairs, only requiring information of DC-link capacitor voltages and three-phase load currents. This is convenient to apply and is compatible of digital computer realization. Feasibility of the proposed control approach is verified by simulation and experimental results.
文摘Potential (non-nuclear) energy stored in reactor facility coolant is a crucial factor determining the NPP safety/hazard characteristics as it is inherent property of the material and cannot be changed. Enhancing safety of the NPP with traditional type reactor facilities, in which potential energy is stored in large quantities, requires buildup of the number of safety systems and in-depth defense barriers, which reduce the probability of severe accidents (but do not exclude the opportunity of their realization) and seriousness of their consequences. Keeping the risk of radioactivity release for different type reactor facilities at a same level of social acceptability, the number of safety systems and in-depth defense barriers, which determine essentially the NPP economical parameters, can be reduced with diminishing the potential energy stored in the reactor facility. To analyze the effect of potential energy on reactor facility safety/hazard, a diagram of reactor facility hazard has been proposed. It presents a probability of radioactivity release as a function of radioactivity release values for reactor facilities with identical radiation potential, which differ by values of potential energy stored in coolant. It is proposed to account NPP safety/hazard effect on economics by adding a certain interest on the electricity cost for making payments in a special insurance fund assigned to compensate the expenses for elimination of consequences of a possible accident.
基金National Natural Science Foundation of China(No.61761027)Postgraduate Education Reform Project of Lanzhou Jiaotong University(No.1600120101)
文摘The topology of diode neutral-point-clamped(NPC)three-level inverter is prone to neutral-point potential offset.When the sum of three-phase current is zero,the virtual space vector pulse width modulation(VSVPWM)scheme does not cause the neutral-point voltage offset,but it lacks the ability to balance the deviation.For this reason,a neutral-point potential control strategy combining virtual space vector modulation and loop width control is proposed.The neutral-point potential is balanced by introducing the distribution factor for the regions with redundant vectors.For other regions,the potential is controlled by selecting a suitable switching sequence.Meanwhile,the effect on the virtual vector modulation is reduced within the loop width by setting an appropriate loop width,thereby improving the balance effect.The simulation results show that the proposed method has a strong ability to control the offset and has excellent potential balance performance under the conditions of balanced load,unbalanced load and asymmetric capacitance parameters.
基金the National Natural Science Foundation of China(No.51407007)。
文摘The output current harmonic distortion of a three-level inverter is less than the traditional twolevel inverter.The voltage stress of the semiconductor switch is low.A neutral point potential drift control method is proposed to solve the problem of the neutral point potential drift of the three-level inverter.The interaction mechanism between the neutral point potential and the space voltage vector is presented.The small vector output by the inverter is found to be the root cause of the midpoint potential drift.It is found that the fluctuation of the midpoint potential could be suppressed by increasing the capacitance value of the inverter bus voltage stabilizing capacitor.Furthermore,it inhibits the fluctuation of the midpoint potential.The experimental results verify the efficiency and precision of the proposed method.
文摘[目的]研究长江流域陆地植被生态系统初级净生产力(NPP)的时空演变特征,为政府部门建立和调整生态功能恢复项目提供参考。[方法]以长江流域为研究区,基于2000—2019年的降水和气温数据,采用周广胜—张新时模型(ZGS)和Thornthwaite Memorial (TM)模型估算NPP,并进一步利用皮尔逊相关分析、一元线性回归分析、Mann-Kendall显著性检验等,对比分析长江流域陆地植被生态系统NPP时空演变特征。[结果](1)基于上述两个模型模拟得到的长江流域NPP时空演变趋势基本一致,相关系数R为0.982,呈现显著正相关关系;(2)2000—2019年长江流域陆地植被生态系统实际NPP与潜在NPP均呈上升趋势,上升速率分别为6.85,2.74 g/(m^(2)·a)。(3)长江流域实际NPP和潜在NPP在空间上呈东南高西北低的分布格局,低值区域主要分布在草地生态系统;高值区域大部分分布在森林生态系统和农田生态系统。(4)2000—2019年长江流域实际NPP与潜在NPP呈上升趋势的面积分别占研究区总面积的80.65%和84.81%,主要分布在云南、青海、西藏、四川北部及浙江、上海大部分区域;呈下降趋势的面积分别占研究区总面积的19.35%和15.19%,主要分布在河南、湖北等地区。[结论] 2000—2019年来长江流域各植被生态系统植被NPP均呈上升趋势。长江流域自然资源管理和环境保护政策在促进生态系统保护与发展方面成效显著。
文摘Net Primary Productivity (NPP) is an important parameter, which is closely connected with global climate change, the global carbon balance and cycle. The study of climate- vegetation interaction is the basis for research on the responses of terrestrial ecosystemto global change and mainly comprises two important components: climate vegetation classification and the NPP of the natural vegetation. Comparing NPP estimated from the classification indices-based model with NPP derived from measurements at 3767 sites in China indicated that the classification indices-based model was capable of estimating large scale NPP. Annual cumulative temperature above 0~C and a moisture index, two main factors affecting NPP, were spatially plotted with the ArcGIS grid tool based on measured data in 2348 meteorological stations from 1961 to 2006. The distribution of NPP for potential vegetation classes under present climate conditions was simulated by the classification indices-based model. The model estimated the total NPP of potential terrestrial vegetation of China to fluctuate between 1.93 and 4.54 Pg C year-1. It pro- vides a reliable means for scaling-up from site to regional scales, and the findings could potentially favor China's position in reducing global warming gases as outlined in the Kyoto Protocol in order to fulfill China's commitment of reducing greenhouse gases.
文摘三相三电平VIENNA整流器作为三电平Boost型中点箝位(neutral point clamped,NPC)结构变换器一种,具有电路结构简单、开关电压应力小、输入电流谐波含量低、可实现输入单位功率因数校正等优点,适合应用于高压中大功率场合。同时,三相功率因数校正(power factor correction,PFC)整流器的单周期控制方案因其控制简单,无需乘法器及采用输入电压受到广泛研究。输出中点电位波动是NPC结构变换器的一个固有问题,以基于单周期控制的三相三电平VIENNA整流器为研究对象,详细地分析整流器输出中点电位波动机理,根据单周期控制方案的特点,提出在三相输入电流采样中注入三次谐波电流分量,同时分析三次谐波电流注入后对整流器输出中点电位的影响,给出三次谐波电流最佳注入系数。在此基础之上,向传统单周期控制系统中继续引入均压环路,使得最终改进后的三相三电平VIENNA整流器单周期控制系统一方面可以提高整流器直流母线电压利用率,另一方面可以有效抑制中点电位的直流和交流波动。仿真与实验验证了所提出的改进单周期控制策略对于整流器输出中点电位平衡控制的有效性。
文摘利用2010年白银区春小麦生长季(4—7月)空间分辨率为250 m的MODIS影像和气象站点的气象数据,通过CASA模型建立了基于MODIS数据的春小麦净初级生产力遥感估算模型,估算出白银区春小麦生长季的净初级生产力(NPP),通过春小麦NPP与干物质转换关系计算出春小麦生产潜力。结果表明:白银区南部春小麦的NPP和生产潜力均大于北部地区,其NPP最小值为42 g C·m-2·a-1,最大值为402 g C·m-2·a-1,且春小麦的生产潜力有明显的季节性规律。根据春小麦生产潜力与实际产量的拟合关系建立了产量估测模型,并对该模型做了精度验证与实用性评价,结果显示该估产模型均方根误差RMSE为76.33 g·m-2,相对均方根误差RMSEr为23.51%。
文摘三相VIENNA整流器作为三电平Boost型中点箝位NPC(neutral point clamped)结构变换器,其具有所需开关器件少、功率因数高、开关管电压应力小和控制环节简单等特点,具有较高的研究价值。而中点电位波动是NPC结构变换器固有的问题,以单周期控制的三相VIENNA整流器作为研究对象。对其直流母线电压利用率较低和中点电压交流波动的问题进行建模分析,提出了在单周期控制基础上加入中点电压平衡控制环,不仅可以基本消除中点电压波动,而且可以提高直流母线电压利用率。最后通过仿真验证了所提控制策略的正确性。