We consider two possible schemes for generation and detection of a monoenergetic directed beam of neutrinos which may have application to neutrino communication. First, we consider generation of a directed neutrino be...We consider two possible schemes for generation and detection of a monoenergetic directed beam of neutrinos which may have application to neutrino communication. First, we consider generation of a directed neutrino beam using electron capture beta decay in hydrogen-like ions. Next, we suggest detection of a directed neutrino beam using resonant absorption of a neutrino by a bare nucleus with the generation of a bound electron. This reaction is inverse to electron capture beta decay, and we call it “Bound State Inverse Beta Decay (BSIBD)”. We show that the recoil effect can be eliminated by an appropriate choice of velocities for the ions and bare nuclei. Finally, we consider a combination of a solid state source of a directed mono-energetic neutrino beam and its detection using BSIBD.展开更多
Revised September 2013 with numbers verified by representatives of the synchrotrons (contact C.-J. Lin, LBNL). For existing (future) neutrino beam lines the latest achieved (design) values are given.
The experimental detection of the hidden periodicities in the activity of various radioactive sources which were observed by different instruments and which coincided with the period of the free oscillations of the Su...The experimental detection of the hidden periodicities in the activity of various radioactive sources which were observed by different instruments and which coincided with the period of the free oscillations of the Sun gave an impetus to the further research. The simultaneous recording of gamma rays from two radioactive sources revealed the elements of synchronism and the periods of solar oscillations as well as the phase delay for the different sources in the obtained time series. A neutrino detector has been designed and tested, the advanced schemes for neutrino detection are developed, and the impact of the neutrino source on the radioactive matter is explored. The search for the new principles for creating the emitters of neutrino beams is conducted.展开更多
A post-acceleration system based on the accelerators at CSNS (China Spallation Neutron Source) is pro- posed to build a super-beam facility for neutrino physics. Two post-acceleration schemes, one using superconduct...A post-acceleration system based on the accelerators at CSNS (China Spallation Neutron Source) is pro- posed to build a super-beam facility for neutrino physics. Two post-acceleration schemes, one using superconducting dipole magnets in the main ring and the other using room temperature magnets, have been studied, both to achieve the final proton energy of 128 GeV and the beam power of 4 MW by taking 10% of the CSNS beam from the neutron source. The main design features and the comparison for the two schemes are presented. The CSNS super-beam facility will be very competitive in long-baseline neutrino physics studies, compared with other super-beam facilities proposed in the world.展开更多
The discovery of the neutrino mixing angle θ13 opens new opportunities for the discovery of leptonic CP violation at high intensity neutrino beams. MOMENT, a future neutrino facility with a high-power proton beam of ...The discovery of the neutrino mixing angle θ13 opens new opportunities for the discovery of leptonic CP violation at high intensity neutrino beams. MOMENT, a future neutrino facility with a high-power proton beam of 15 MW from a continuous-wave linac, is focused on that discovery. The high power of the proton beam causes extreme radiation conditions for the facility and especially for the target station, where the pion capture system of five superconducting solenoids is located. In this paper initial studies are performed for the effects of the radiation on the solenoid structure and the area surrounding it. A concept cooling system is also proposed.展开更多
文摘We consider two possible schemes for generation and detection of a monoenergetic directed beam of neutrinos which may have application to neutrino communication. First, we consider generation of a directed neutrino beam using electron capture beta decay in hydrogen-like ions. Next, we suggest detection of a directed neutrino beam using resonant absorption of a neutrino by a bare nucleus with the generation of a bound electron. This reaction is inverse to electron capture beta decay, and we call it “Bound State Inverse Beta Decay (BSIBD)”. We show that the recoil effect can be eliminated by an appropriate choice of velocities for the ions and bare nuclei. Finally, we consider a combination of a solid state source of a directed mono-energetic neutrino beam and its detection using BSIBD.
文摘Revised September 2013 with numbers verified by representatives of the synchrotrons (contact C.-J. Lin, LBNL). For existing (future) neutrino beam lines the latest achieved (design) values are given.
文摘The experimental detection of the hidden periodicities in the activity of various radioactive sources which were observed by different instruments and which coincided with the period of the free oscillations of the Sun gave an impetus to the further research. The simultaneous recording of gamma rays from two radioactive sources revealed the elements of synchronism and the periods of solar oscillations as well as the phase delay for the different sources in the obtained time series. A neutrino detector has been designed and tested, the advanced schemes for neutrino detection are developed, and the impact of the neutrino source on the radioactive matter is explored. The search for the new principles for creating the emitters of neutrino beams is conducted.
基金Supported by National Natural Science Foundation of China(11235012,10975150)
文摘A post-acceleration system based on the accelerators at CSNS (China Spallation Neutron Source) is pro- posed to build a super-beam facility for neutrino physics. Two post-acceleration schemes, one using superconducting dipole magnets in the main ring and the other using room temperature magnets, have been studied, both to achieve the final proton energy of 128 GeV and the beam power of 4 MW by taking 10% of the CSNS beam from the neutron source. The main design features and the comparison for the two schemes are presented. The CSNS super-beam facility will be very competitive in long-baseline neutrino physics studies, compared with other super-beam facilities proposed in the world.
基金Supported by National Natural Science Foundation of China(11425524,11527811,11575226)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA10010100)
文摘The discovery of the neutrino mixing angle θ13 opens new opportunities for the discovery of leptonic CP violation at high intensity neutrino beams. MOMENT, a future neutrino facility with a high-power proton beam of 15 MW from a continuous-wave linac, is focused on that discovery. The high power of the proton beam causes extreme radiation conditions for the facility and especially for the target station, where the pion capture system of five superconducting solenoids is located. In this paper initial studies are performed for the effects of the radiation on the solenoid structure and the area surrounding it. A concept cooling system is also proposed.