Many models of gamma-ray bursts suggest a common central engine; a black hole of several solar masses accreting matter from a disk at an accretion rate from 0.01 to 10 M⊙s^-1, the inner region of the disk is cooled b...Many models of gamma-ray bursts suggest a common central engine; a black hole of several solar masses accreting matter from a disk at an accretion rate from 0.01 to 10 M⊙s^-1, the inner region of the disk is cooled by neutrino emission and large amounts of its binding energy are liberated, which could trigger the fireball. We improve the neutrino- dominated accreting flows by including the effects of magnetic fields. We find that more than half of the liberated energy can be extracted directly by the large-scale magnetic fields in the disk, and it turns out that the temperature of the disk is a bit lower than the neutrino-dominated accreting flows without magnetic field. Therefore, the outflows are magnetically-dominated rather than neutrino dominated. In our model, the neutrino mechanism can fuel some GRBs (not the brightest ones), but cannot fuel X-ray flares. The magnetic processes (both BZ and electromagnetic luminosity from a disk) are viable mechanisms for most of GRBs and their following X-ray flares.展开更多
In “<i>A Self-linking Field Formalism</i>” I establish a self-dual field structure with higher order self-induced symmetries that reinforce the first-order dynamics. The structure was derived from Gauss-...In “<i>A Self-linking Field Formalism</i>” I establish a self-dual field structure with higher order self-induced symmetries that reinforce the first-order dynamics. The structure was derived from Gauss-linking integrals in R<sup>3</sup> based on the Biot-Savart law and Ampere’s law applied to Heaviside’s equations, derived in strength-independent fashion in “<i>Primordial Principle of Self-Interaction</i>”. The derivation involves Geometric Calculus, topology, and field equations. My goal in this paper is to derive the simplest solution of a self-stabilized solitonic structure and discuss this model of a neutrino.展开更多
The mass neutrino interference phases along the null trajectory and the geodesic line in Kerr space-time are studied on the plane θ = π/2. Because of the rotation object in Kerr space-time, a particle travelling alo...The mass neutrino interference phases along the null trajectory and the geodesic line in Kerr space-time are studied on the plane θ = π/2. Because of the rotation object in Kerr space-time, a particle travelling along the radial geodesic must have a dragging effect produced by the angular momentum of the central object. We give the correction of the phase due to the rotation of the space-time. We find that the type-I interference phase along the geodesic remains the double of that along the null on the condition that the rotating quantity parameter a^2 is preserved and the higher order terms are negligible (e.g. a^4). In addition, we calculate the proper oscillation length in Kerr space-time. All of our results can return to those in Schwarzschild space-time as the rotating parameter a approaches zero.展开更多
The genesis of physical particles is essentially a mystery. Quantum field theory creation operators provide an abstract mechanism by which particles come into existence, but quantum fields do not possess energy densit...The genesis of physical particles is essentially a mystery. Quantum field theory creation operators provide an abstract mechanism by which particles come into existence, but quantum fields do not possess energy density. I reference several recent treatments of this problem and develop ideas based on self-stabilizing field structures with focus on higher order self-induced self-stabilizing field structures. I extend this treatment in this paper to related issues of topological charge.展开更多
The hypothesis of the absolute reference system, unlike the existing physics theories, is not based on the concept of relativity (that is, it is not based on a relativistic description like Galileo’s relativity or Ei...The hypothesis of the absolute reference system, unlike the existing physics theories, is not based on the concept of relativity (that is, it is not based on a relativistic description like Galileo’s relativity or Einstein’s theory of relativity). The absolute reference system is the framework of material in which any activity in the universe has begun. Also, each inertial reference system is accompanied by a peculiar electromagnetic wave due to the structure of matter. The physics of the absolute system of reference is based on three basic principles. The first of these principles is that the electromagnetic field quantitative estimates are made in the inertial reference system of the source of the electromagnetic field. The second principle is that the basic constituent of matter is “bound photons”, which make up the internal structure of the elementary particles. The third principle is that the framework of material of an inertial system undergoes a contraction of length which is a real physical contraction and a corresponding real change in “time flow”, not due to the geometry of space-time, but is due to the internal operation of the micro-structure of matter. These principles have the effect of changing the relativistic physical magnitudes, such as velocity, momentum and kinetic energy, into physical magnitudes described as absolute. This theory is consistent with experimental data so far and provides satisfactory answers to physics problems such as dark matter, particle physics experiments to confirm the dynamics, interpretation of experimental results of measurement of neutrinos velocity that are incompatible with the relativity, and magnetic induction experiments which are not explained by the classical electromagnetic theory.展开更多
Maxwell electrodynamics in the fixed Minkowski space-time background can be described in an equivalent way in a curved Riemannian geometry that depends on the electromagnetic field and that we call the electromagnetic...Maxwell electrodynamics in the fixed Minkowski space-time background can be described in an equivalent way in a curved Riemannian geometry that depends on the electromagnetic field and that we call the electromagnetic metric(e-metric for short). After showing such geometric equivalence we investigate the possibility that new processes dependent on the e-metric are allowed. In particular, for very high values of the field, a direct coupling of uncharged particles to the electromagnetic field may appear.展开更多
Based on the p-f shell model, the effect of strong magnetic field on neutrino energy loss rates by electron capture is investigated. The calculations show that the magnetic field has only a slight effect on the neutri...Based on the p-f shell model, the effect of strong magnetic field on neutrino energy loss rates by electron capture is investigated. The calculations show that the magnetic field has only a slight effect on the neutrino energy loss rates in the range of 10^8-10^13 G on the surfaces of most neutron stars. But for some magnetars, the range of the magnetic field is 10^13-10^18 G, and the neutrino energy loss rates are greatly reduced, even by more than four orders of magnitude due to the strong magnetic field.展开更多
基金Supported by the National Natural Science Foundation of China.
文摘Many models of gamma-ray bursts suggest a common central engine; a black hole of several solar masses accreting matter from a disk at an accretion rate from 0.01 to 10 M⊙s^-1, the inner region of the disk is cooled by neutrino emission and large amounts of its binding energy are liberated, which could trigger the fireball. We improve the neutrino- dominated accreting flows by including the effects of magnetic fields. We find that more than half of the liberated energy can be extracted directly by the large-scale magnetic fields in the disk, and it turns out that the temperature of the disk is a bit lower than the neutrino-dominated accreting flows without magnetic field. Therefore, the outflows are magnetically-dominated rather than neutrino dominated. In our model, the neutrino mechanism can fuel some GRBs (not the brightest ones), but cannot fuel X-ray flares. The magnetic processes (both BZ and electromagnetic luminosity from a disk) are viable mechanisms for most of GRBs and their following X-ray flares.
文摘In “<i>A Self-linking Field Formalism</i>” I establish a self-dual field structure with higher order self-induced symmetries that reinforce the first-order dynamics. The structure was derived from Gauss-linking integrals in R<sup>3</sup> based on the Biot-Savart law and Ampere’s law applied to Heaviside’s equations, derived in strength-independent fashion in “<i>Primordial Principle of Self-Interaction</i>”. The derivation involves Geometric Calculus, topology, and field equations. My goal in this paper is to derive the simplest solution of a self-stabilized solitonic structure and discuss this model of a neutrino.
文摘The mass neutrino interference phases along the null trajectory and the geodesic line in Kerr space-time are studied on the plane θ = π/2. Because of the rotation object in Kerr space-time, a particle travelling along the radial geodesic must have a dragging effect produced by the angular momentum of the central object. We give the correction of the phase due to the rotation of the space-time. We find that the type-I interference phase along the geodesic remains the double of that along the null on the condition that the rotating quantity parameter a^2 is preserved and the higher order terms are negligible (e.g. a^4). In addition, we calculate the proper oscillation length in Kerr space-time. All of our results can return to those in Schwarzschild space-time as the rotating parameter a approaches zero.
文摘The genesis of physical particles is essentially a mystery. Quantum field theory creation operators provide an abstract mechanism by which particles come into existence, but quantum fields do not possess energy density. I reference several recent treatments of this problem and develop ideas based on self-stabilizing field structures with focus on higher order self-induced self-stabilizing field structures. I extend this treatment in this paper to related issues of topological charge.
基金supported in part by the' 100 talents' project of Chinese Academy of Sciences(CAS)by the National Natural Science Foundation of China (NSFC) under the grants 10675109 and 10735040.
文摘The hypothesis of the absolute reference system, unlike the existing physics theories, is not based on the concept of relativity (that is, it is not based on a relativistic description like Galileo’s relativity or Einstein’s theory of relativity). The absolute reference system is the framework of material in which any activity in the universe has begun. Also, each inertial reference system is accompanied by a peculiar electromagnetic wave due to the structure of matter. The physics of the absolute system of reference is based on three basic principles. The first of these principles is that the electromagnetic field quantitative estimates are made in the inertial reference system of the source of the electromagnetic field. The second principle is that the basic constituent of matter is “bound photons”, which make up the internal structure of the elementary particles. The third principle is that the framework of material of an inertial system undergoes a contraction of length which is a real physical contraction and a corresponding real change in “time flow”, not due to the geometry of space-time, but is due to the internal operation of the micro-structure of matter. These principles have the effect of changing the relativistic physical magnitudes, such as velocity, momentum and kinetic energy, into physical magnitudes described as absolute. This theory is consistent with experimental data so far and provides satisfactory answers to physics problems such as dark matter, particle physics experiments to confirm the dynamics, interpretation of experimental results of measurement of neutrinos velocity that are incompatible with the relativity, and magnetic induction experiments which are not explained by the classical electromagnetic theory.
基金Supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)FAPERJ(Fundao do Amparo Pesquisa do Rio de Janeiro)+1 种基金FINEP(Financiadora de Estudos e Projetos)Coordenao do Aperfeioamento do Pessoal do Ensino Superior(CAPES)
文摘Maxwell electrodynamics in the fixed Minkowski space-time background can be described in an equivalent way in a curved Riemannian geometry that depends on the electromagnetic field and that we call the electromagnetic metric(e-metric for short). After showing such geometric equivalence we investigate the possibility that new processes dependent on the e-metric are allowed. In particular, for very high values of the field, a direct coupling of uncharged particles to the electromagnetic field may appear.
基金Supported by National Natural Science Foundation of China (10778719)Scientific Research and Fund of Sichuan Provincial Education Department (2006A079)
文摘Based on the p-f shell model, the effect of strong magnetic field on neutrino energy loss rates by electron capture is investigated. The calculations show that the magnetic field has only a slight effect on the neutrino energy loss rates in the range of 10^8-10^13 G on the surfaces of most neutron stars. But for some magnetars, the range of the magnetic field is 10^13-10^18 G, and the neutrino energy loss rates are greatly reduced, even by more than four orders of magnitude due to the strong magnetic field.