High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten...High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.展开更多
A neutron star(NS)has many extreme physical conditions,and one may obtain some important information about an NS via accreting neutron star binary(ANSB)systems.The upcoming Chinese Space Station Telescope(CSST)provide...A neutron star(NS)has many extreme physical conditions,and one may obtain some important information about an NS via accreting neutron star binary(ANSB)systems.The upcoming Chinese Space Station Telescope(CSST)provides an opportunity to search for a large sample of ANSB candidates.Our goal is to check the completeness of the potential ANSB samples from CSST data.In this paper,we generate some ANSBs and normal binaries under the CSST photometric system by binary evolution and binary population synthesis method and use a machine learning method to train a classification model.Although the Precision(94.56%)of our machine learning model is as high as before study,the Recall is only about 63.29%.The Precision/Recall is mainly determined by the mass transfer rate between the NSs and their companions.In addition,we also find that the completeness of ANSB samples from CSST photometric data by the machine learning method also depends on the companion mass and the age of the system.ANSB candidates with a low initial mass companion star(0.1 M_(⊙)to 1 M_(⊙))have a relatively high Precision(94.94%)and high Recall(86.32%),whereas ANSB candidates with a higher initial mass companion star(1.1 M_(⊙)to 3 M_(⊙))have similar Precision(93.88%)and quite low Recall(42.67%).Our results indicate that although the machine learning method may obtain a relatively pure sample of ANSBs,a completeness correction is necessary for one to obtain a complete sample.展开更多
We report the detection of type-B quasi-periodic oscillation(QPO)of the black hole X-ray binary Swift J1728.9-3613 observed by NICER during the 2019 outburst.A type-B QPO was observed for the first two days and it dis...We report the detection of type-B quasi-periodic oscillation(QPO)of the black hole X-ray binary Swift J1728.9-3613 observed by NICER during the 2019 outburst.A type-B QPO was observed for the first two days and it disappeared as flux increased,but again appeared at∼7.70 Hz when flux was dramatically decreased.The source was found in the soft intermediate state during these observations.We further studied the energy dependence of the QPO.We found that QPO was observed only for a higher energy range implying that the origin of QPO is possibly due to the corona emitting higher energy photons by the inverse Compton process.The variation of spectral parameters can be explained with the disk truncation model.The fractional rms was found to be monotonically increased with energy.The phase lag spectrum followed the“U-shaped”curve.The rms and phase lag spectrum are modeled and explained with the single-component Comptonization model vkompthdk.展开更多
The radial x-ray camera(RXC) is designed to measure the poloidal profile of plasma x-ray emission with high spatial and temporal resolution. The RXC diagnostic system consists of internal camera module and external ca...The radial x-ray camera(RXC) is designed to measure the poloidal profile of plasma x-ray emission with high spatial and temporal resolution. The RXC diagnostic system consists of internal camera module and external camera module that view the core region and outer region through the vertical slots of the diagnostic first wall and diagnostics shield module of the equatorial port plug. To ensure the normal performance of the silicon photodiode array detectors of the cameras in the hard neutron irradiation environment in ITER tokamak, it is necessary to calculate neutron flux, radiation damage and the nuclear heating of the silicon photodiode array detectors and simulate the radiation maps of the range of RXC. This work estimated the nuclear environment of RXC based on Monte Carlo N-particle transport code, plasma scenarios of ITER tokamak and the RXC-integrated ITER CLITE model. The neutron flux of silicon photodiode array detectors and the lifetime of the silicon photodiode detector in the camera were calculated. The neutronic analysis results show that the shielding design has achieved the effect as expected and is able to guarantee the normal work of the detector during the ITER deuterium–deuterium phase without replacement, three detectors of the external camera can be operated during the whole deuterium–tritium phase without replacement.展开更多
The concept of the liquid Li17Pb83 and Helium gas dual-cooled Fuel Breeding Blanket (FBB) for the Fusion-Driven sub-critical System (FDS) is presented and analyzed. Taking self-sustaining tritium (TBR >1.05) and an...The concept of the liquid Li17Pb83 and Helium gas dual-cooled Fuel Breeding Blanket (FBB) for the Fusion-Driven sub-critical System (FDS) is presented and analyzed. Taking self-sustaining tritium (TBR >1.05) and annual output of 100 kg or more fissile 239Pu (FBR > 0.238) as objective parameters, and based on the three-dimensional Monte Carlo neutron-photon transport code MCNP/4A, a neutronics-optimizated calculation of different cases was carried out and the concept is proved feasible. In addition, the total breeding ratio ( BR = TBR + FBR ) is listed corresponding to different cases.展开更多
Several X-ray-dim isolated neutron stars (XDINSs), also known as the Magnificent Seven, exhibit a Planck-like soft X-ray spectrum. In the optical/ultraviolet (UV) band, there is an excess of radiation compared to ...Several X-ray-dim isolated neutron stars (XDINSs), also known as the Magnificent Seven, exhibit a Planck-like soft X-ray spectrum. In the optical/ultraviolet (UV) band, there is an excess of radiation compared to an extrapolation from the X-ray spectrum. However, the majority exhibits "spec- tral deviations": the fact that there is more flux at longer wavelengths makes spectra deviate from the Rayleigh-Jeans law. A model of bremsstrahlung emission from a nonuniform plasma atmosphere is proposed in the regime of a strangeon star to explain the optical/UV excess and its spectral devi- ation as well as X-ray pulsation. The atmosphere is on the surface of strangeon matter, which has negligible emission, and is formed by the accretion of ISM-fed debris disk matter moving along the magnetic field lines to near the polar caps. These particles may spread out of the polar regions which makes the atmosphere non-uniform. The modeled electron temperatures are ~ 100 - 200 eV with radi- ation radii Ropt ~ 5 - 14km. The spectra of five sources (RX J0720.4-3125, RX J0806.4-4123, RX J1308.6+2127, RX J1605.3+3249, RX J1856.5-3754) from optical/UV to X-ray bands can be fitted well by the radiative model, and exhibit Gaussian absorption lines at ~ 100 - 500 eV as would be expected. Furthermore, the surroundings (i.e., fallback disks or dusty belts) of XDINSs could be tested by future infrared/submillimeter observations.展开更多
Observations of black hole and neutron star X-ray binaries show that the luminosity of the hard-to-soft state transition is usually higher than that of the soft-to-hard state transition,indicating additional parameter...Observations of black hole and neutron star X-ray binaries show that the luminosity of the hard-to-soft state transition is usually higher than that of the soft-to-hard state transition,indicating additional parameters other than mass accretion rate are required to interpret spectral state transitions.It has been found in some individual black hole or neutron star soft X-ray transients that the luminosity corresponding to the hard-to-soft state transition is positively correlated with the peak luminosity of the following soft state. In this work,we report the discovery of the same correlation in the single persistent neutron star low mass X-ray binary(LMXB) 4 U 1636–536 based on data from the All Sky Monitor(ASM) on board RXTE,the Gas Slit Camera(GSC) on board MAXI and the Burst Alert Telescope(BAT) on board Swift. We also found such a positive correlation holds in this persistent neutron star LMXB in a luminosity range spanning about a factor of four. Our results indicate that non-stationary accretion also plays an important role in driving X-ray spectral state transitions in persistent accreting systems with small accretion flares,which is much less dramatic compared with the bright outbursts seen in many Galactic LMXB transients.展开更多
Earth abundant O3-type NaFe_(0.5)Mn_(0.5)O_(2)layered oxide is regarded as one of the most promising cathodes for sodium ion batteries due to its low cost and high energy density.However,its poor structural stability ...Earth abundant O3-type NaFe_(0.5)Mn_(0.5)O_(2)layered oxide is regarded as one of the most promising cathodes for sodium ion batteries due to its low cost and high energy density.However,its poor structural stability and cycle life strongly impede the practical application.Herein,the dynamic phase evolution as well as charge compensation mechanism of O3-type NaFe_(0.5)Mn_(0.5)O_(2)cathode during sodiation/desodiation are revealed by a systemic study with operando X-ray diffraction and X-ray absorption spectroscopy,high resolution neutron powder diffraction and neutron pair distribution functions.The layered structure experiences a phase transition of O3→P3→OP2→ramsdellite during the desodiation,and a new O3’phase is observed at the end of the discharge state(1.5 V).The density functional theory(DFT)calculations and nPDF results suggest that depletion of Na^(+)ions induces the movement of Fe into Na layer resulting the formation of an inert ramsdellite phase thus causing the loss of capacity and structural integrity.Meanwhile,the operando XAS clarified the voltage regions for active Mn^(3+)/Mn^(4+)and Fe^(3+)/Fe^(4+)redox couples.This work points out the universal underneath problem for Fe-based layered oxide cathodes when cycled at high voltage and highlights the importance to suppress Fe migration regarding the design of high energy O3-type cathodes for sodium ion batteries.展开更多
Thermal parameters of TIBr were determined using both X-ray and neutron diffraction techniques. The data was analysed by Rietveld profile refinement procedure. From the neutron diffraction data, due to weak odd-order ...Thermal parameters of TIBr were determined using both X-ray and neutron diffraction techniques. The data was analysed by Rietveld profile refinement procedure. From the neutron diffraction data, due to weak odd-order reflections, it was not possible to determine the individual thermal parameters. TheX-ray diffraction measurements yielded BT1=0.296(5) nm2 and BBr=0.162(5) nm2. The overall isotropic value, B was 0.252(7) nm2 which is in good agreement with B=0.230(8) nm2 obtained from present neutron diffraction measurements. The present values are also in good agreement with theoretical estimates obtained from the shell models.展开更多
Tantalum nitride (TAN) compact with a Vickers hardness of 26 GPa is prepared by a high-pressure and high- temperature (HPHT) method. The crystal structure and atom occupations of WC-type TaN have been investigated...Tantalum nitride (TAN) compact with a Vickers hardness of 26 GPa is prepared by a high-pressure and high- temperature (HPHT) method. The crystal structure and atom occupations of WC-type TaN have been investigated by neutron powder diffraction, and the compressibility of WC-type TaN has been investigated by using in-situ high-pressure synchrotron x-ray diffraction. The third-order Birch-Murnaghan equation of state fitted to the x-ray diffraction pressure- volume (P-V) sets of data, collected up to 41 GPa, yields ambient pressure isothermal bulk moduli of B0 = 369(2) GPa with pressure derivatives of B~ = 4 for the WC-type TaN. The bulk modulus of WC-type TaN is not in good agreement with the previous result (Bo = 351 GPa), which is close to the recent theoretical calculation result (Bo = 378 GPa). An analysis of the experiment results shows that crystal structure of WC-type TaN can be viewed as alternate stacking of Ta and N layers along the c direction, and the covalent Ta-N bonds between Ta and N layers along the c axis in the crystal structure play an important role in the incompressibility and hardness of WC-type TaN.展开更多
Interlayer Pd for the Li/Pd/Cu neutron target for BNCT (boron neutron capture therapy) was characterized after 0.1-5 keV H2^+ irradiation by XAFS (X-ray absorption fine structure) technique, and following conclus...Interlayer Pd for the Li/Pd/Cu neutron target for BNCT (boron neutron capture therapy) was characterized after 0.1-5 keV H2^+ irradiation by XAFS (X-ray absorption fine structure) technique, and following conclusions were derived: (1) from the XAFS observation of white line of Pd, remarkable Pd L3 edge jump was found in 1.1-3 times higher than before irradiation in low irradiation fluence; (2) this fact indicates increase of hole density in Pd 4d-band, whereas, no change was observed for XASF spectra of Ag sample under the same irradiation conditions; (3) remarkable Pd L3 edge shift of 0.12-0.66 eV was also found with increase of H2+ irradiation energy in low fluence, and drastically decreased after peak in high irradiation energy and fluence; (4) implanted protons deposited in Pd as negative under the balance of electron population enhanced by proton irradiation and charge transfer.展开更多
We investigate a unique accreting millisecond pulsar with X-ray eclipses, SWIFT J1749.4-2807 (hereafter J1749), and try to set limits on the binary system by various methods including use of the Roche lobe, the mass...We investigate a unique accreting millisecond pulsar with X-ray eclipses, SWIFT J1749.4-2807 (hereafter J1749), and try to set limits on the binary system by various methods including use of the Roche lobe, the mass-radius relations of both main sequence (MS) and white dwarf (WD) companion stars, as well as the measured mass function of the pulsar. The calculations are based on the assumption that the radius of the companion star has reached its Roche radius (or is at 90%), but the pulsar's mass has not been assumed to be a certain value. Our results are as follows. The companion star should be an MS one. For the case that the radius equals its Roche one, we have a companion star with mass M ≈ 0.51 Me and radius Rc ≈ 0.52 R⊙, and the inclination angle is i ≈ 76.5°; for the case that the radius reaches 90% of its Roche one, we have M ≈ 0.43M⊙, Rc ≈ 0.44R⊙ and i ≈ 75.7°. We also obtain the mass of J1749, Mp ≈ 1 M⊙, and conclude that the pulsar could be a quark star if the ratio of the critical frequency of rotation-mode instability to the Keplerian one is higher than - 0.3. The relatively low pulsar mass (about - M⊙) may also challenge the conventional recycling scenario for the origin and evolution of millisecond pulsars. The results presented in this paper are expected to be tested by future observations.展开更多
We show that, by appealing to a Quark-Nova (QN) in a tight binary system containing a massive neutron star and a CO white dwarf (WD), a Type Ia explosion could occur. The QN ejecta collides with the WD, driving a ...We show that, by appealing to a Quark-Nova (QN) in a tight binary system containing a massive neutron star and a CO white dwarf (WD), a Type Ia explosion could occur. The QN ejecta collides with the WD, driving a shock that triggers carbon burning under degenerate conditions (the QN-Ia). The conditions in the compressed low-mass WD (MwD 〈 0.9 M) in our model mimic those of a Chandrasekhar mass WD. The spin-down luminosity from the QN compact remnant (the quark star) pro- vides additional power that makes the QN-Ia light-curve brighter and broader than a standard SN-Ia with similar 56Ni yield. In QNe-Ia, photometry and spectroscopy are not necessarily linked since the kinetic energy of the ejecta has a contribution from spin-down power and nuclear decay. Although QNe-Ia may not obey the Phillips relationship, their brightness and their relatively "normal looking" light-curves mean they could be included in the cosmological sample. Light-curve fitters would be con- fused by the discrepancy between spectroscopy at peak and photometry and would correct for it by effectively brightening or dimming the QNe-Ia apparent magnitudes, thus over- or under-estimating the true magnitude of these spin-down powered SNe-Ia. Contamination of QNe-Ia in samples of SNe-Ia used for cosmological analyses could systematically bias measurements of cosmological parameters if QNe-Ia are numerous enough at high-redshift. The strong mixing induced by spin-down wind combined with the low 56Ni yields in QNe-Ia means that these would lack a secondary maximum in the/-band despite their luminous nature. We discuss possible QNe-Ia progenitors.展开更多
The aspect of formation and evolution of the recycled pulsar(PSR J0737-3039 A/B) is investigated, taking into account the contributions of accretion rate, radius and spin-evolution diagram(- diagram) in the double...The aspect of formation and evolution of the recycled pulsar(PSR J0737-3039 A/B) is investigated, taking into account the contributions of accretion rate, radius and spin-evolution diagram(- diagram) in the double pulsar system. Accepting the spin-down age as a rough estimate(or often an upper limit) of the true age of the neutron star, we also impose the restrictions on the radius of this system. We calculate the radius of the recycled pulsar PSR J0737-3039 A ranges approximately from 8.14 to 25.74 km, and the composition of its neutron star nuclear matters is discussed in the mass-radius diagram.展开更多
In accreting neutron star (NS) low-mass X-ray binaries (LMXBs), the turbulent flow in accretion disk may show magnetic structures. Its emission will vary in time due to inhomogeneous motions through and with the accre...In accreting neutron star (NS) low-mass X-ray binaries (LMXBs), the turbulent flow in accretion disk may show magnetic structures. Its emission will vary in time due to inhomogeneous motions through and with the accretion flow. These emissions contribute to considerable X-ray variability on a wide range of timescales in all wavelengths, and down to milliseconds. In this article, we give a brief review for quasi-periodic oscillations (QPOs), one of a periodic X-ray variability, in NS/ LMXBs. Firstly, we give a brief introduction to NS/LMXBs and the fruitful QPO components. As an example, the energy dependence of normal branch oscillations in Scorpius X-1 is discussed. We mostly focus on the properties and mechanism of kilohertz QPOs—the fastest variability components that have the same order as the dynamical timescales of the innermost regions of accretion flow. Finally, we discuss the success and questions for theoretical interpretations and present the possible entry for investigation of nature of QPOs.展开更多
We examine systematically the observed X-ray luminosity jumps(or flares) from quiescent states in millisecond binary pulsars(MSBPs) and high-mass X-ray binary pulsars(HMXBPs). We rely on the published X-ray light curv...We examine systematically the observed X-ray luminosity jumps(or flares) from quiescent states in millisecond binary pulsars(MSBPs) and high-mass X-ray binary pulsars(HMXBPs). We rely on the published X-ray light curves of seven pulsars: four HMXBPs, two MSBPs and the ultraluminous X-ray pulsar M82 X-2. We discuss the physics of their flaring activities or lack thereof, paying special attention to their emission properties when they are found on the propeller line, inside the Corbet gap or near the light-cylinder barrier. We provide guiding principles for future interpretations of faint X-ray observations, as well as a method of constraining the propeller lines and the dipolar surface magnetic fields of pulsars using a variety of quiescent states. In the process, we clarify some disturbing inaccuracies that have made their way into the published literature.展开更多
In this paper,we presented the 23.3 yr of pulsar timing results of PSR J1456-6413 based on the observations of Parkes 64 m radio telescope.We detected two new glitches at MJD 57093(3)and 59060(12)and confirmed its fir...In this paper,we presented the 23.3 yr of pulsar timing results of PSR J1456-6413 based on the observations of Parkes 64 m radio telescope.We detected two new glitches at MJD 57093(3)and 59060(12)and confirmed its first glitch at MJD 54554(10).The relative sizes(Δν/ν)of these two new glitches are 0.9×10^(-9)and 1.16×10^(-9),respectively.Using the“Cholesky”timing analysis method,we have determined its position,proper motion,and two-dimensional transverse velocities from the data segments before and after the second glitch,respectively.Furthermore,we detected exponential recovery behavior after the first glitch,with a recovery timescale of approximately 200 days and a corresponding exponential recovery factor Q of approximately 0.15(2),while no exponential recovery was detected for the other two glitches.More interestingly,we found that the leading component of the integral pulse profile after the second glitch became stronger,while the main component became weaker.Our results will expand the sample of pulsars with magnetosphere fluctuation triggered by the glitch event.展开更多
We analyzed the spectral properties and pulse profile of PSR J1811-1925,a pulsar located in the center of composite supernova remnant(SNR)G11.2-0.3,by using high timing resolution archival data from the Nuclear Spectr...We analyzed the spectral properties and pulse profile of PSR J1811-1925,a pulsar located in the center of composite supernova remnant(SNR)G11.2-0.3,by using high timing resolution archival data from the Nuclear Spectroscopic Telescope Array Mission(NuSTAR).Analysis of archival Chandra data over different regions rules out the SNR shell as the site of the hard X-ray emission while spectral analysis indicates that the NuSTAR photons originate in the pulsar and its nebula.The pulse profile exhibits a broad single peak up to 35 keV.The jointed spectrum by combining NuSTAR and Chandra can be well fitted by a power-law model with a photon index ofΓ=1.58±0.04.The integrated flux of jointed spectrum over 1-10 keV is 3.36×10^(-12)erg cm^(-2)s^(-1).The spectrum of pulsar having photon indexΓ=1.33±0.06 and a 1-10 keV flux of 0.91×10^(-12)erg cm^(-2)s^(-1).We also performed the phase-resolved spectral analysis by splitting the whole pulse-on phase into five phase bins.The photon indices of the bins are all around 1.4,indicating that the photon index does not evolve with the phase.展开更多
New cobalt(II) complex, [Co(O<sub>2</sub>C<sub>15</sub>H<sub>11</sub>N<sub>2</sub>S)<sub>2</sub>(OH<sub>2</sub>)<sub>2</sub>]∙2H<s...New cobalt(II) complex, [Co(O<sub>2</sub>C<sub>15</sub>H<sub>11</sub>N<sub>2</sub>S)<sub>2</sub>(OH<sub>2</sub>)<sub>2</sub>]∙2H<sub>2</sub>O (1∙2H<sub>2</sub>O), has been synthesized upon reaction of cobalt chloride hexahydrate (Co(Cl)<sub>2</sub>∙6H<sub>2</sub>O) with 3-methyl-1-Phenyl-4-(2-thienoyl)-pyrazol-5-one (referred as HL) in ethanol at room temperature. Single crystal X-ray diffraction (XRD), spectroscopic methods, and microelemental analyses were used to characterize 1∙2H<sub>2</sub>O. Compound 1∙2H<sub>2</sub>O crystallizes in the orthorhombic crystal system with a Pbca space group and with the cobalt atom being pseudo-octahedral coordinated. The broth microdilution technique was used to screen the free ligand (HL) and the complex (1∙2H<sub>2</sub>O) for antimicrobial activities. HL has a low activity (MIC > 100 μg/mL) on all microorganisms, whereas compound 1∙2H<sub>2</sub>O displayed moderate activity (10 ∙2H<sub>2</sub>O exhibited bactericidal and fungicidal activity respectively on all the bacteria and yeasts tested. These findings reveal that the antimicrobial activity of HL was enhanced upon coordination to Co(II) ion against all microorganisms (bacteria and fungus).展开更多
New cobalt(II) complex, [Co(O<sub>2</sub>C<sub>15</sub>H<sub>11</sub>N<sub>2</sub>S)<sub>2</sub>(OH<sub>2</sub>)<sub>2</sub>]∙2H<s...New cobalt(II) complex, [Co(O<sub>2</sub>C<sub>15</sub>H<sub>11</sub>N<sub>2</sub>S)<sub>2</sub>(OH<sub>2</sub>)<sub>2</sub>]∙2H<sub>2</sub>O (1∙2H<sub>2</sub>O), has been synthesized upon reaction of cobalt chloride hexahydrate (Co(Cl)<sub>2</sub>∙6H<sub>2</sub>O) with 3-methyl-1-Phenyl-4-(2-thienoyl)-pyrazol-5-one (referred as HL) in ethanol at room temperature. Single crystal X-ray diffraction (XRD), spectroscopic methods, and microelemental analyses were used to characterize 1∙2H<sub>2</sub>O. Compound 1∙2H<sub>2</sub>O crystallizes in the orthorhombic crystal system with a Pbca space group and with the cobalt atom being pseudo-octahedral coordinated. The broth microdilution technique was used to screen the free ligand (HL) and the complex (1∙2H<sub>2</sub>O) for antimicrobial activities. HL has a low activity (MIC > 100 μg/mL) on all microorganisms, whereas compound 1∙2H<sub>2</sub>O displayed moderate activity (10 ∙2H<sub>2</sub>O exhibited bactericidal and fungicidal activity respectively on all the bacteria and yeasts tested. These findings reveal that the antimicrobial activity of HL was enhanced upon coordination to Co(II) ion against all microorganisms (bacteria and fungus).展开更多
基金supported by the National Natural Science Foundation of China(Nos.52171098 and 51921001)the State Key Laboratory for Advanced Metals and Materials(No.2022Z-02)+1 种基金the National High-level Personnel of Special Support Program(No.ZYZZ2021001)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-20-03C2 and FRF-BD-20-02B).
文摘High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.
基金supported by the National Natural Science Foundation of China(Nos.12288102 and 12333008)the National Key R&D Program of China(No.2021YFA1600403)+3 种基金support from the International Centre of Supernovae,Yunnan Key Laboratory(No.202302AN360001)the Yunnan Revitalization Talent Support Program-Science&Technology Champion Project(No.202305AB350003)the Yunnan Fundamental Research Projects(Nos.202401BC070007 and 202201B C070003)the science research grants from the China Manned Space Project。
文摘A neutron star(NS)has many extreme physical conditions,and one may obtain some important information about an NS via accreting neutron star binary(ANSB)systems.The upcoming Chinese Space Station Telescope(CSST)provides an opportunity to search for a large sample of ANSB candidates.Our goal is to check the completeness of the potential ANSB samples from CSST data.In this paper,we generate some ANSBs and normal binaries under the CSST photometric system by binary evolution and binary population synthesis method and use a machine learning method to train a classification model.Although the Precision(94.56%)of our machine learning model is as high as before study,the Recall is only about 63.29%.The Precision/Recall is mainly determined by the mass transfer rate between the NSs and their companions.In addition,we also find that the completeness of ANSB samples from CSST photometric data by the machine learning method also depends on the companion mass and the age of the system.ANSB candidates with a low initial mass companion star(0.1 M_(⊙)to 1 M_(⊙))have a relatively high Precision(94.94%)and high Recall(86.32%),whereas ANSB candidates with a higher initial mass companion star(1.1 M_(⊙)to 3 M_(⊙))have similar Precision(93.88%)and quite low Recall(42.67%).Our results indicate that although the machine learning method may obtain a relatively pure sample of ANSBs,a completeness correction is necessary for one to obtain a complete sample.
文摘We report the detection of type-B quasi-periodic oscillation(QPO)of the black hole X-ray binary Swift J1728.9-3613 observed by NICER during the 2019 outburst.A type-B QPO was observed for the first two days and it disappeared as flux increased,but again appeared at∼7.70 Hz when flux was dramatically decreased.The source was found in the soft intermediate state during these observations.We further studied the energy dependence of the QPO.We found that QPO was observed only for a higher energy range implying that the origin of QPO is possibly due to the corona emitting higher energy photons by the inverse Compton process.The variation of spectral parameters can be explained with the disk truncation model.The fractional rms was found to be monotonically increased with energy.The phase lag spectrum followed the“U-shaped”curve.The rms and phase lag spectrum are modeled and explained with the single-component Comptonization model vkompthdk.
基金supported by National Natural Science Foundation of China (No. 11605240)China International Nuclear Fusion Energy Program Execution Center Radial x-ray Camera Design Contract (No. 5.5.P1.CN.02/1A)
文摘The radial x-ray camera(RXC) is designed to measure the poloidal profile of plasma x-ray emission with high spatial and temporal resolution. The RXC diagnostic system consists of internal camera module and external camera module that view the core region and outer region through the vertical slots of the diagnostic first wall and diagnostics shield module of the equatorial port plug. To ensure the normal performance of the silicon photodiode array detectors of the cameras in the hard neutron irradiation environment in ITER tokamak, it is necessary to calculate neutron flux, radiation damage and the nuclear heating of the silicon photodiode array detectors and simulate the radiation maps of the range of RXC. This work estimated the nuclear environment of RXC based on Monte Carlo N-particle transport code, plasma scenarios of ITER tokamak and the RXC-integrated ITER CLITE model. The neutron flux of silicon photodiode array detectors and the lifetime of the silicon photodiode detector in the camera were calculated. The neutronic analysis results show that the shielding design has achieved the effect as expected and is able to guarantee the normal work of the detector during the ITER deuterium–deuterium phase without replacement, three detectors of the external camera can be operated during the whole deuterium–tritium phase without replacement.
基金This work was supported by the Chinese Academy of Sciences and the National Natural Science Foundation of China No.10175068.
文摘The concept of the liquid Li17Pb83 and Helium gas dual-cooled Fuel Breeding Blanket (FBB) for the Fusion-Driven sub-critical System (FDS) is presented and analyzed. Taking self-sustaining tritium (TBR >1.05) and annual output of 100 kg or more fissile 239Pu (FBR > 0.238) as objective parameters, and based on the three-dimensional Monte Carlo neutron-photon transport code MCNP/4A, a neutronics-optimizated calculation of different cases was carried out and the concept is proved feasible. In addition, the total breeding ratio ( BR = TBR + FBR ) is listed corresponding to different cases.
基金support of MoST(2016YFE0100300)the National Natural Science Foundation of China(NSFC,Nos.11473044,11633004,11653003)+9 种基金CAS(QYZDJ-SSW-SLH017)supported by the Open Project Program of the Key Laboratory of FAST,Chinese Academy of Sciences(CAS)supported by the West Light Foundation(XBBS-2014-23) NSFC(No.11203018)supported by NSFC(No.11225314)the Open Project Program of the Key Laboratory of Radio Astronomy,CASsupported by the National Key R&D Program of China(No.2017YFA0402602)NSFC(Nos.11673002 and U1531243)the Strategic Priority Program of CAS(No.XDB23010200)supported by Special Funding for Advanced Users,budgeted and administrated by the Center for Astronomical Mega-Science,Chinese Academy of Sciences(CAMS).
文摘Several X-ray-dim isolated neutron stars (XDINSs), also known as the Magnificent Seven, exhibit a Planck-like soft X-ray spectrum. In the optical/ultraviolet (UV) band, there is an excess of radiation compared to an extrapolation from the X-ray spectrum. However, the majority exhibits "spec- tral deviations": the fact that there is more flux at longer wavelengths makes spectra deviate from the Rayleigh-Jeans law. A model of bremsstrahlung emission from a nonuniform plasma atmosphere is proposed in the regime of a strangeon star to explain the optical/UV excess and its spectral devi- ation as well as X-ray pulsation. The atmosphere is on the surface of strangeon matter, which has negligible emission, and is formed by the accretion of ISM-fed debris disk matter moving along the magnetic field lines to near the polar caps. These particles may spread out of the polar regions which makes the atmosphere non-uniform. The modeled electron temperatures are ~ 100 - 200 eV with radi- ation radii Ropt ~ 5 - 14km. The spectra of five sources (RX J0720.4-3125, RX J0806.4-4123, RX J1308.6+2127, RX J1605.3+3249, RX J1856.5-3754) from optical/UV to X-ray bands can be fitted well by the radiative model, and exhibit Gaussian absorption lines at ~ 100 - 500 eV as would be expected. Furthermore, the surroundings (i.e., fallback disks or dusty belts) of XDINSs could be tested by future infrared/submillimeter observations.
基金supported in part by the National Program on Key Research and Development Project (Grant No.2016YFA0400804)the National Natural Science Foundation of China (Grant Nos.11103062,U1531130 and 11333005)+1 种基金support by the FAST Scholar fellowshipsupported by Special Funding for Advanced Users,budgeted and administered by the Center for Astronomical Mega-Science,Chinese Academy of Sciences (CAMS)
文摘Observations of black hole and neutron star X-ray binaries show that the luminosity of the hard-to-soft state transition is usually higher than that of the soft-to-hard state transition,indicating additional parameters other than mass accretion rate are required to interpret spectral state transitions.It has been found in some individual black hole or neutron star soft X-ray transients that the luminosity corresponding to the hard-to-soft state transition is positively correlated with the peak luminosity of the following soft state. In this work,we report the discovery of the same correlation in the single persistent neutron star low mass X-ray binary(LMXB) 4 U 1636–536 based on data from the All Sky Monitor(ASM) on board RXTE,the Gas Slit Camera(GSC) on board MAXI and the Burst Alert Telescope(BAT) on board Swift. We also found such a positive correlation holds in this persistent neutron star LMXB in a luminosity range spanning about a factor of four. Our results indicate that non-stationary accretion also plays an important role in driving X-ray spectral state transitions in persistent accreting systems with small accretion flares,which is much less dramatic compared with the bright outbursts seen in many Galactic LMXB transients.
基金financial support of the Guangdong Basic and Applied Basic Research Foundation(2019A1515110897 and 2019B1515120028)。
文摘Earth abundant O3-type NaFe_(0.5)Mn_(0.5)O_(2)layered oxide is regarded as one of the most promising cathodes for sodium ion batteries due to its low cost and high energy density.However,its poor structural stability and cycle life strongly impede the practical application.Herein,the dynamic phase evolution as well as charge compensation mechanism of O3-type NaFe_(0.5)Mn_(0.5)O_(2)cathode during sodiation/desodiation are revealed by a systemic study with operando X-ray diffraction and X-ray absorption spectroscopy,high resolution neutron powder diffraction and neutron pair distribution functions.The layered structure experiences a phase transition of O3→P3→OP2→ramsdellite during the desodiation,and a new O3’phase is observed at the end of the discharge state(1.5 V).The density functional theory(DFT)calculations and nPDF results suggest that depletion of Na^(+)ions induces the movement of Fe into Na layer resulting the formation of an inert ramsdellite phase thus causing the loss of capacity and structural integrity.Meanwhile,the operando XAS clarified the voltage regions for active Mn^(3+)/Mn^(4+)and Fe^(3+)/Fe^(4+)redox couples.This work points out the universal underneath problem for Fe-based layered oxide cathodes when cycled at high voltage and highlights the importance to suppress Fe migration regarding the design of high energy O3-type cathodes for sodium ion batteries.
文摘Thermal parameters of TIBr were determined using both X-ray and neutron diffraction techniques. The data was analysed by Rietveld profile refinement procedure. From the neutron diffraction data, due to weak odd-order reflections, it was not possible to determine the individual thermal parameters. TheX-ray diffraction measurements yielded BT1=0.296(5) nm2 and BBr=0.162(5) nm2. The overall isotropic value, B was 0.252(7) nm2 which is in good agreement with B=0.230(8) nm2 obtained from present neutron diffraction measurements. The present values are also in good agreement with theoretical estimates obtained from the shell models.
基金Project supported by the Research Foundation of Key Laboratory of Neutron Physics(Grant No.2015BB03)the National Natural Science Foundation of China(Grant Nos.11774247)+2 种基金the Science Foundation for Excellent Youth Scholars of Sichuan University(Grant No.2015SCU04A04)the Joint Usage/Research Center PRIUS(Ehime University,Japan)Chinese Academy of Sciences(Grant No.2017-BEPC-PT-000568)
文摘Tantalum nitride (TAN) compact with a Vickers hardness of 26 GPa is prepared by a high-pressure and high- temperature (HPHT) method. The crystal structure and atom occupations of WC-type TaN have been investigated by neutron powder diffraction, and the compressibility of WC-type TaN has been investigated by using in-situ high-pressure synchrotron x-ray diffraction. The third-order Birch-Murnaghan equation of state fitted to the x-ray diffraction pressure- volume (P-V) sets of data, collected up to 41 GPa, yields ambient pressure isothermal bulk moduli of B0 = 369(2) GPa with pressure derivatives of B~ = 4 for the WC-type TaN. The bulk modulus of WC-type TaN is not in good agreement with the previous result (Bo = 351 GPa), which is close to the recent theoretical calculation result (Bo = 378 GPa). An analysis of the experiment results shows that crystal structure of WC-type TaN can be viewed as alternate stacking of Ta and N layers along the c direction, and the covalent Ta-N bonds between Ta and N layers along the c axis in the crystal structure play an important role in the incompressibility and hardness of WC-type TaN.
文摘Interlayer Pd for the Li/Pd/Cu neutron target for BNCT (boron neutron capture therapy) was characterized after 0.1-5 keV H2^+ irradiation by XAFS (X-ray absorption fine structure) technique, and following conclusions were derived: (1) from the XAFS observation of white line of Pd, remarkable Pd L3 edge jump was found in 1.1-3 times higher than before irradiation in low irradiation fluence; (2) this fact indicates increase of hole density in Pd 4d-band, whereas, no change was observed for XASF spectra of Ag sample under the same irradiation conditions; (3) remarkable Pd L3 edge shift of 0.12-0.66 eV was also found with increase of H2+ irradiation energy in low fluence, and drastically decreased after peak in high irradiation energy and fluence; (4) implanted protons deposited in Pd as negative under the balance of electron population enhanced by proton irradiation and charge transfer.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10778611 and 10973002)the National Basic Research Program of China(Grant No. 2009CB824800)
文摘We investigate a unique accreting millisecond pulsar with X-ray eclipses, SWIFT J1749.4-2807 (hereafter J1749), and try to set limits on the binary system by various methods including use of the Roche lobe, the mass-radius relations of both main sequence (MS) and white dwarf (WD) companion stars, as well as the measured mass function of the pulsar. The calculations are based on the assumption that the radius of the companion star has reached its Roche radius (or is at 90%), but the pulsar's mass has not been assumed to be a certain value. Our results are as follows. The companion star should be an MS one. For the case that the radius equals its Roche one, we have a companion star with mass M ≈ 0.51 Me and radius Rc ≈ 0.52 R⊙, and the inclination angle is i ≈ 76.5°; for the case that the radius reaches 90% of its Roche one, we have M ≈ 0.43M⊙, Rc ≈ 0.44R⊙ and i ≈ 75.7°. We also obtain the mass of J1749, Mp ≈ 1 M⊙, and conclude that the pulsar could be a quark star if the ratio of the critical frequency of rotation-mode instability to the Keplerian one is higher than - 0.3. The relatively low pulsar mass (about - M⊙) may also challenge the conventional recycling scenario for the origin and evolution of millisecond pulsars. The results presented in this paper are expected to be tested by future observations.
文摘We show that, by appealing to a Quark-Nova (QN) in a tight binary system containing a massive neutron star and a CO white dwarf (WD), a Type Ia explosion could occur. The QN ejecta collides with the WD, driving a shock that triggers carbon burning under degenerate conditions (the QN-Ia). The conditions in the compressed low-mass WD (MwD 〈 0.9 M) in our model mimic those of a Chandrasekhar mass WD. The spin-down luminosity from the QN compact remnant (the quark star) pro- vides additional power that makes the QN-Ia light-curve brighter and broader than a standard SN-Ia with similar 56Ni yield. In QNe-Ia, photometry and spectroscopy are not necessarily linked since the kinetic energy of the ejecta has a contribution from spin-down power and nuclear decay. Although QNe-Ia may not obey the Phillips relationship, their brightness and their relatively "normal looking" light-curves mean they could be included in the cosmological sample. Light-curve fitters would be con- fused by the discrepancy between spectroscopy at peak and photometry and would correct for it by effectively brightening or dimming the QNe-Ia apparent magnitudes, thus over- or under-estimating the true magnitude of these spin-down powered SNe-Ia. Contamination of QNe-Ia in samples of SNe-Ia used for cosmological analyses could systematically bias measurements of cosmological parameters if QNe-Ia are numerous enough at high-redshift. The strong mixing induced by spin-down wind combined with the low 56Ni yields in QNe-Ia means that these would lack a secondary maximum in the/-band despite their luminous nature. We discuss possible QNe-Ia progenitors.
基金Supported by the National Program on Key Research and Development Project under Grant No 2016YFA0400801the National Natural Science Foundation of China under Grant Nos 11173034,11673023 and 11364007+2 种基金the Fundamental Research Funds for the Central Universitythe Key Support Disciplines of Theoretical Physics of Guizhou Province Education Bureau under Grant No ZDXK[2015]38the Youth Talents Project of Science and Technology in Education Bureau of Guizhou Province under Grant No KY[2017]204
文摘The aspect of formation and evolution of the recycled pulsar(PSR J0737-3039 A/B) is investigated, taking into account the contributions of accretion rate, radius and spin-evolution diagram(- diagram) in the double pulsar system. Accepting the spin-down age as a rough estimate(or often an upper limit) of the true age of the neutron star, we also impose the restrictions on the radius of this system. We calculate the radius of the recycled pulsar PSR J0737-3039 A ranges approximately from 8.14 to 25.74 km, and the composition of its neutron star nuclear matters is discussed in the mass-radius diagram.
文摘In accreting neutron star (NS) low-mass X-ray binaries (LMXBs), the turbulent flow in accretion disk may show magnetic structures. Its emission will vary in time due to inhomogeneous motions through and with the accretion flow. These emissions contribute to considerable X-ray variability on a wide range of timescales in all wavelengths, and down to milliseconds. In this article, we give a brief review for quasi-periodic oscillations (QPOs), one of a periodic X-ray variability, in NS/ LMXBs. Firstly, we give a brief introduction to NS/LMXBs and the fruitful QPO components. As an example, the energy dependence of normal branch oscillations in Scorpius X-1 is discussed. We mostly focus on the properties and mechanism of kilohertz QPOs—the fastest variability components that have the same order as the dynamical timescales of the innermost regions of accretion flow. Finally, we discuss the success and questions for theoretical interpretations and present the possible entry for investigation of nature of QPOs.
基金supported by NASA grant NNX14-AF77Gsupported by a NASA ADAP grant
文摘We examine systematically the observed X-ray luminosity jumps(or flares) from quiescent states in millisecond binary pulsars(MSBPs) and high-mass X-ray binary pulsars(HMXBPs). We rely on the published X-ray light curves of seven pulsars: four HMXBPs, two MSBPs and the ultraluminous X-ray pulsar M82 X-2. We discuss the physics of their flaring activities or lack thereof, paying special attention to their emission properties when they are found on the propeller line, inside the Corbet gap or near the light-cylinder barrier. We provide guiding principles for future interpretations of faint X-ray observations, as well as a method of constraining the propeller lines and the dipolar surface magnetic fields of pulsars using a variety of quiescent states. In the process, we clarify some disturbing inaccuracies that have made their way into the published literature.
基金supported by the National SKA Program of China(Nos.2022SKA0130100,2020SKA0120100 and 2022SKA0130104)Guizhou Province Science and Technology Foundation(No.ZK[2022]304)+9 种基金the Major Science and Technology Program of Xinjiang Uygur Autonomous Region(Nos.2022A03013-2 and 2022A03013-4)the Scientific Research Project of the Guizhou Provincial Education(Nos.KY[2022]132,KY[2022]123 and KY[2022]137)the National Natural Science Foundation of China(Nos.11873080,U1731238,11565010,12103013,U1838109,U1831120,12273008 and 12103013)the Joint Research Fund in Astronomy under cooperative agreement between the National Natural Science Foundation of China and Chinese Academy of Sciences(No.U1931101)the Foundation of Guizhou Provincial Education Department(Nos.KY(2020)003 and KY(2021)303)the Guizhou Province Science and Technology Support Program(No.[2023]General 333)the 2021 project Xinjiang Uygur autonomous region of China for Tianshan elites,the Key Laboratory of Xinjiang Uygur Autonomous Region No.2020D04049the Academic New Seeding Fund Project of Guizhou Normal University(No.[2022]B18)the CAS Jianzhihua projectThe Parkes radio telescope is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO。
文摘In this paper,we presented the 23.3 yr of pulsar timing results of PSR J1456-6413 based on the observations of Parkes 64 m radio telescope.We detected two new glitches at MJD 57093(3)and 59060(12)and confirmed its first glitch at MJD 54554(10).The relative sizes(Δν/ν)of these two new glitches are 0.9×10^(-9)and 1.16×10^(-9),respectively.Using the“Cholesky”timing analysis method,we have determined its position,proper motion,and two-dimensional transverse velocities from the data segments before and after the second glitch,respectively.Furthermore,we detected exponential recovery behavior after the first glitch,with a recovery timescale of approximately 200 days and a corresponding exponential recovery factor Q of approximately 0.15(2),while no exponential recovery was detected for the other two glitches.More interestingly,we found that the leading component of the integral pulse profile after the second glitch became stronger,while the main component became weaker.Our results will expand the sample of pulsars with magnetosphere fluctuation triggered by the glitch event.
基金supported by the National Natural Science Foundation of China(NSFC,grant No.U1838203)International Partnership Program of Chinese Academy of Sciences(grant No.113111KYSB20190020)。
文摘We analyzed the spectral properties and pulse profile of PSR J1811-1925,a pulsar located in the center of composite supernova remnant(SNR)G11.2-0.3,by using high timing resolution archival data from the Nuclear Spectroscopic Telescope Array Mission(NuSTAR).Analysis of archival Chandra data over different regions rules out the SNR shell as the site of the hard X-ray emission while spectral analysis indicates that the NuSTAR photons originate in the pulsar and its nebula.The pulse profile exhibits a broad single peak up to 35 keV.The jointed spectrum by combining NuSTAR and Chandra can be well fitted by a power-law model with a photon index ofΓ=1.58±0.04.The integrated flux of jointed spectrum over 1-10 keV is 3.36×10^(-12)erg cm^(-2)s^(-1).The spectrum of pulsar having photon indexΓ=1.33±0.06 and a 1-10 keV flux of 0.91×10^(-12)erg cm^(-2)s^(-1).We also performed the phase-resolved spectral analysis by splitting the whole pulse-on phase into five phase bins.The photon indices of the bins are all around 1.4,indicating that the photon index does not evolve with the phase.
文摘New cobalt(II) complex, [Co(O<sub>2</sub>C<sub>15</sub>H<sub>11</sub>N<sub>2</sub>S)<sub>2</sub>(OH<sub>2</sub>)<sub>2</sub>]∙2H<sub>2</sub>O (1∙2H<sub>2</sub>O), has been synthesized upon reaction of cobalt chloride hexahydrate (Co(Cl)<sub>2</sub>∙6H<sub>2</sub>O) with 3-methyl-1-Phenyl-4-(2-thienoyl)-pyrazol-5-one (referred as HL) in ethanol at room temperature. Single crystal X-ray diffraction (XRD), spectroscopic methods, and microelemental analyses were used to characterize 1∙2H<sub>2</sub>O. Compound 1∙2H<sub>2</sub>O crystallizes in the orthorhombic crystal system with a Pbca space group and with the cobalt atom being pseudo-octahedral coordinated. The broth microdilution technique was used to screen the free ligand (HL) and the complex (1∙2H<sub>2</sub>O) for antimicrobial activities. HL has a low activity (MIC > 100 μg/mL) on all microorganisms, whereas compound 1∙2H<sub>2</sub>O displayed moderate activity (10 ∙2H<sub>2</sub>O exhibited bactericidal and fungicidal activity respectively on all the bacteria and yeasts tested. These findings reveal that the antimicrobial activity of HL was enhanced upon coordination to Co(II) ion against all microorganisms (bacteria and fungus).
文摘New cobalt(II) complex, [Co(O<sub>2</sub>C<sub>15</sub>H<sub>11</sub>N<sub>2</sub>S)<sub>2</sub>(OH<sub>2</sub>)<sub>2</sub>]∙2H<sub>2</sub>O (1∙2H<sub>2</sub>O), has been synthesized upon reaction of cobalt chloride hexahydrate (Co(Cl)<sub>2</sub>∙6H<sub>2</sub>O) with 3-methyl-1-Phenyl-4-(2-thienoyl)-pyrazol-5-one (referred as HL) in ethanol at room temperature. Single crystal X-ray diffraction (XRD), spectroscopic methods, and microelemental analyses were used to characterize 1∙2H<sub>2</sub>O. Compound 1∙2H<sub>2</sub>O crystallizes in the orthorhombic crystal system with a Pbca space group and with the cobalt atom being pseudo-octahedral coordinated. The broth microdilution technique was used to screen the free ligand (HL) and the complex (1∙2H<sub>2</sub>O) for antimicrobial activities. HL has a low activity (MIC > 100 μg/mL) on all microorganisms, whereas compound 1∙2H<sub>2</sub>O displayed moderate activity (10 ∙2H<sub>2</sub>O exhibited bactericidal and fungicidal activity respectively on all the bacteria and yeasts tested. These findings reveal that the antimicrobial activity of HL was enhanced upon coordination to Co(II) ion against all microorganisms (bacteria and fungus).