By introducing the Dirac δ-function and Pauli exclusion principle in the presence of superstrong magnetic fields (SMFs), we investigate the influence of SMFs on beta decay and the change rates of electron fraction ...By introducing the Dirac δ-function and Pauli exclusion principle in the presence of superstrong magnetic fields (SMFs), we investigate the influence of SMFs on beta decay and the change rates of electron fraction (CREF) of nuclides 56Fe, 62Ni, 64Ni and 6SNi in magnetars, which are powered by magnetic field energy. We find that the magnetic fields have a great influence on the beta decay rates, and the beta decay rates can decrease by more than six orders of magnitude in the presence of SMFs. The CREF also decreases by more than seven orders of magnitude in the presence of SMFs.展开更多
Based on the theory of relativistic superstrong magnetic fields (SMFs), by using the method of Thomas-Fermi-Dirac approximations, we investigate the problem of strong electron screening (SES) in SMFs and the influ...Based on the theory of relativistic superstrong magnetic fields (SMFs), by using the method of Thomas-Fermi-Dirac approximations, we investigate the problem of strong electron screening (SES) in SMFs and the influence of SES on the nuclear reaction of 23Mg (p, Y)24A1. Our calculations show that the nuclear reaction will be markedly effected by the SES in SMFs in the surface of magnetars. Our calculated screening rates can increase two orders of magnitude due to SES in SMFs.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11565020)the Counterpart Foundation of Sanya (Grant No. 2016PT43)+2 种基金the Special Foundation of Science and Technology Cooperation for Advanced Academy and Regional of Sanya (Grant No. 2016YD28)the Natural Science Foundation of Hainan province (Grant No. 114012)the Natural Science Foundation of Jiangxi Province (Grant No. 20132BAB212005)
文摘By introducing the Dirac δ-function and Pauli exclusion principle in the presence of superstrong magnetic fields (SMFs), we investigate the influence of SMFs on beta decay and the change rates of electron fraction (CREF) of nuclides 56Fe, 62Ni, 64Ni and 6SNi in magnetars, which are powered by magnetic field energy. We find that the magnetic fields have a great influence on the beta decay rates, and the beta decay rates can decrease by more than six orders of magnitude in the presence of SMFs. The CREF also decreases by more than seven orders of magnitude in the presence of SMFs.
基金supported in part by the National Natural Science Foundation of China through grant No. 11565020the Natural Science Foundation of Hainan province under grant No. 114012the Undergraduate Innovation Program of Hainan province under grant No. 20130139
文摘Based on the theory of relativistic superstrong magnetic fields (SMFs), by using the method of Thomas-Fermi-Dirac approximations, we investigate the problem of strong electron screening (SES) in SMFs and the influence of SES on the nuclear reaction of 23Mg (p, Y)24A1. Our calculations show that the nuclear reaction will be markedly effected by the SES in SMFs in the surface of magnetars. Our calculated screening rates can increase two orders of magnitude due to SES in SMFs.