Gravitational waves emanating from binary neutron star inspirals,alongside electromagnetic transients resulting from the aftermath of the GW170817 merger,have been successfully detected.However,the intricate post-merg...Gravitational waves emanating from binary neutron star inspirals,alongside electromagnetic transients resulting from the aftermath of the GW170817 merger,have been successfully detected.However,the intricate post-merger dynamics that bridge these two sets of observables remain enigmatic.This includes if,and when,the post-merger remnant star collapses to a black hole,and what are the necessary conditions to power a short gamma-ray burst,and other observed electromagnetic counterparts.Our focus is on the detection of gravitational wave(GW)emissions from hyper-massive neutron stars(NSs)formed through binary neutron star(BNS)mergers.Utilizing several kilohertz GW detectors,we simulate BNS mergers within the detection limits of LIGO-Virgo-KARGA O4.Our objective is to ascertain the fraction of simulated sources that may emit detectable post-merger GW signals.For kilohertz detectors equipped with a new cavity design,we estimate that approximately 1.1%-32%of sources would emit a detectable post-merger GW signal.This fraction is contingent on the mass converted into gravitational wave energy,ranging from 0.01M_(sun)to 0.1M_(sun).Furthermore,by evaluating other well-regarded proposed kilohertz GW detectors,we anticipate that the fraction can increase to as much as 2.1%-61%under optimal performance conditions.展开更多
It seems that the wealth of information revealed by the multi-messenger observations of the binary neutron star(NS)merger event,GW170817/GRB 170817A/kilonova AT2017gfo,places irreconcilable constraints to models of th...It seems that the wealth of information revealed by the multi-messenger observations of the binary neutron star(NS)merger event,GW170817/GRB 170817A/kilonova AT2017gfo,places irreconcilable constraints to models of the prompt emission of this gamma-ray burst(GRB).The observed time delay between the merger of the two NSs and the trigger of the GRB and the thermal tail of the prompt emission can hardly be reproduced by these models simultaneously.We argue that the merger remnant should be an NS(last for,at least,a large fraction of 1 s),and that the difficulty can be alleviated by the delayed formation of the accretion disk due to the absorption of high-energy neutrinos emitted by the NS and the delayed emergence of effective viscosity in the disk.Further,we extend the consideration of the effect of the energy deposition of neutrinos emitted from the NS.If the NS is the central object of a GRB with a distance and duration similar to that of GRB 170817A,thermal emission of the thermal bubble inflated by the NS after the termination of accretion may be detectable.If our scenario is verified,it would be of interest to investigate the cooling of nascent NSs.展开更多
Exploring the state of ultra-cold supranuclear dense matter that makes up the cores of massive neutron stars is one of the greatest unresolved problems in modern physics. In this letter, we show that when the interior...Exploring the state of ultra-cold supranuclear dense matter that makes up the cores of massive neutron stars is one of the greatest unresolved problems in modern physics. In this letter, we show that when the interiors of pulsars are made of compressible and dissipative normal matter, the commonly used solution procedures combined with the known EOSs yield widely scattered solutions and poorly determined radii. A remarkable agreement emerges, however, if pulsars harbour cores that are made of incompressible entropy-free superfluids (SuSu-matter) embedded in flat spacetimes. Such supranuclear dense matter should condensate to form false vacua as predicated by non-perterbative QCD vacuum. The solutions here are found to be physically consistent and mathematically elegant, irrespective of the object’s mass. Based thereon, we conclude that the true masses of massive NSs may differ significantly from those revealed by direct observation.展开更多
A neutron star(NS)has many extreme physical conditions,and one may obtain some important information about an NS via accreting neutron star binary(ANSB)systems.The upcoming Chinese Space Station Telescope(CSST)provide...A neutron star(NS)has many extreme physical conditions,and one may obtain some important information about an NS via accreting neutron star binary(ANSB)systems.The upcoming Chinese Space Station Telescope(CSST)provides an opportunity to search for a large sample of ANSB candidates.Our goal is to check the completeness of the potential ANSB samples from CSST data.In this paper,we generate some ANSBs and normal binaries under the CSST photometric system by binary evolution and binary population synthesis method and use a machine learning method to train a classification model.Although the Precision(94.56%)of our machine learning model is as high as before study,the Recall is only about 63.29%.The Precision/Recall is mainly determined by the mass transfer rate between the NSs and their companions.In addition,we also find that the completeness of ANSB samples from CSST photometric data by the machine learning method also depends on the companion mass and the age of the system.ANSB candidates with a low initial mass companion star(0.1 M_(⊙)to 1 M_(⊙))have a relatively high Precision(94.94%)and high Recall(86.32%),whereas ANSB candidates with a higher initial mass companion star(1.1 M_(⊙)to 3 M_(⊙))have similar Precision(93.88%)and quite low Recall(42.67%).Our results indicate that although the machine learning method may obtain a relatively pure sample of ANSBs,a completeness correction is necessary for one to obtain a complete sample.展开更多
Theories of modified gravity suggest that the propagation speed of gravitational waves(GW)v_gmay deviate from the speed of light c.A constraint can be placed on the difference between c and v_gwith a simple method tha...Theories of modified gravity suggest that the propagation speed of gravitational waves(GW)v_gmay deviate from the speed of light c.A constraint can be placed on the difference between c and v_gwith a simple method that uses the arrival time delay between GW and electromagnetic wave simultaneously emitted from a burst event.We simulated the joint observation of GW and short gamma-ray burst signals from binary neutron star merger events in different observation campaigns,involving advanced LIGO(aLIGO)in design sensitivity and Einstein Telescope(ET)joint-detected with Fermi/GBM.As a result,the relative precision of constraint on v_gcan reach~10~(-17)(aLIGO)and~10^(-18)(ET),which are one and two orders of magnitude better than that from GW170817,respectively.We continue to obtain the bound of graviton mass m_g≤7.1(3.2)×10~(-20)eV with aLIGO(ET).Applying the Standard-Model Extension test framework,the constraint on v_gallows us to study the Lorentz violation in the nondispersive,nonbirefringent limit of the gravitational sector.We obtain the constraints of the dimensionless isotropic coefficients S_(00)^(4)at mass dimension d=4,which are-1×10^(-15)<S_(00)^(4)<9×10^(-17)for aLIGO and-4×10^(-16)<s_(00)^(4<8<10^(-18))for ET.展开更多
β decay in the strong magnetic field of the crusts of neutron stars is analysed by an improved method. The reactions ^67Ni(β-)^67Cu and ^62Mn(β-)^62Fe are investigated as examples. The results show that a weak ...β decay in the strong magnetic field of the crusts of neutron stars is analysed by an improved method. The reactions ^67Ni(β-)^67Cu and ^62Mn(β-)^62Fe are investigated as examples. The results show that a weak magnetic field has little effect on β decay but a strong magnetic field (B 〉 10^12G) increases β decay rates obviously. The conclusion derived may be crucial to the research of late evolution of neutron stars and nucleosynthesis in r-process.展开更多
The equations ofstate of the neutron star matter are calculated in the relativistic mean-field approximation witl different hyperon coupling constants. The properties of neutron stars are studied by solving the Oppenh...The equations ofstate of the neutron star matter are calculated in the relativistic mean-field approximation witl different hyperon coupling constants. The properties of neutron stars are studied by solving the OppenheimerVolkoff equation. It manifests the properties of neutron stars - change explicitly as different hyperon coupling constants are concerned.展开更多
Resonant cyclotron scattering (RCS) in pulsar magnetospheres is considered. The photon diffusion equation (Kompaneets equation) for RCS is derived. The photon system is modeled three dimensionally. Numerical calcu...Resonant cyclotron scattering (RCS) in pulsar magnetospheres is considered. The photon diffusion equation (Kompaneets equation) for RCS is derived. The photon system is modeled three dimensionally. Numerical calculations show that there exist not only up scattering but also down scattering of RCS, depending on the parameter space. RCS's possible applications to spectral energy distributions of magnetar candidates and radio quiet isolated neutron stars (INSs) are pointed out. The optical/UV excess of INSs may be caused by the down scattering of RCS. The calculations for RX J1856.5-3754 and RX J0720.4-3125 are presented and compared with their observational data. In our model, the INSs are proposed to be normal neutron stars, although the quark star hypothesis is still possible. The low pulsation amplitude of INSs is a natural consequence in the RCS model.展开更多
The numerical results of the populations for the baryon octet in neutron star matter have been presented by solving a set transcendental equations in the framework of the relativistic mean field approximation. The inf...The numerical results of the populations for the baryon octet in neutron star matter have been presented by solving a set transcendental equations in the framework of the relativistic mean field approximation. The influence of the hyperon interactions on hyperon populations in neutron star matter is discussed. The results manifest that when the ratio of the hyperon-to-nucleon couplings increases, all hyperons appear towards low baryon density direction.展开更多
A unified description of finite nuclei and equation of state of neutron stars presents both a major challenge and also opportunities for understanding nuclear interactions.Inspired by the Lee-Huang-Yang formula of har...A unified description of finite nuclei and equation of state of neutron stars presents both a major challenge and also opportunities for understanding nuclear interactions.Inspired by the Lee-Huang-Yang formula of hardsphere gases,we develop effective nuclear interactions with an additional high-order density dependent term.While the original Skyrme force SLy4 is widely used in studies of neutron stars,there are not satisfactory global descriptions of finite nuclei.The refitted SLy4' force can improve descriptions of finite nuclei but slightly reduces the radius of neutron star of 1.4 M_☉ with M_☉ being the solar mass.We find that the extended SLy4 force with a higher-order density dependence can properly describe properties of both finite nuclei and GW170817 binary neutron stars,including the mass-radius relation and the tidal deformability.This demonstrates the essential role of high-order density dependence at ultrahigh densities.Our work provides a unified and predictive model for neutron stars,as well as new insights for the future development of effective interactions.展开更多
Using a realistic equation of state (EOS) of strange quark matter, namely, the modified bag model, and considering the constraints on the parameters of EOS by the observational mass limit of neutron stars, we invest...Using a realistic equation of state (EOS) of strange quark matter, namely, the modified bag model, and considering the constraints on the parameters of EOS by the observational mass limit of neutron stars, we investigate the r-mode instability window of strange stars, and find the same result as in the brief study of Haskell, Degenaar and Ho in 2012 that these instability windows are not consistent with the spin frequency and temperature observations of neutron stars in low mass X-ray binaries.展开更多
In a second-order r-mode theory, Sa and Tome found that the r-mode oscillation in neutron stars (NSs) could induce stellar differential rotation, which naturally leads to a saturated state of the oscillation. Based ...In a second-order r-mode theory, Sa and Tome found that the r-mode oscillation in neutron stars (NSs) could induce stellar differential rotation, which naturally leads to a saturated state of the oscillation. Based on a consideration of the coupling of the r-modes and the stellar spin and thermal evolution, we carefully investigate the influences of the differential rotation on the long-term evolution of isolated NSs and NSs in low-mass X-ray binaries, where the viscous damping of the r-modes and its resultant effects are taken into account. The numerical results show that, for both kinds of NSs, the differential rotation can significantly prolong the duration of the r-modes. As a result, the stars can keep nearly a constant temperature and constant angular velocity for over a thousand years. Moreover, the persistent radiation of a quasi-monochromatic gravitational wave would also be predicted due to the long-term steady r-mode oscillation and stellar rotation. This increases the detectability of gravitational waves from both young isolated and old accreting NSs.展开更多
We review theoretical relations between macroscopic properties of neutron stars and microscopic quantities of nuclear matter, such as consistency of hadronic nuclear models and observed masses of neutron stars. The re...We review theoretical relations between macroscopic properties of neutron stars and microscopic quantities of nuclear matter, such as consistency of hadronic nuclear models and observed masses of neutron stars. The relativistic hadronic field theory, quantum hadrodynamics (QHD), and mean-field approximations of the theory are applied to saturation properties of symmetric nuclear and neutron matter. The equivalence between mean-field approximations and Hartree approximation is emphasized in terms of renormalized effective masses and effective coupling constants of hadrons. This is important to prove that the direct application of mean-field (Hartree) approximation to nuclear and neutron matter is inadequate to examine physical observables. The equations of state (EOS), binding energies of nuclear matter, self-consistency of nuclear matter, are reviewed, and the result of chiral Hartree-Fock ?approximation is shown. Neutron stars and history of nuclear astrophysics, nuclear model and nuclear matter, possibility of hadron and hadron-quark neutron stars are briefly reviewed. The hadronic models are very useful and practical for understanding astrophysical phenomena, nuclear matter and radiation phenomena of nuclei.展开更多
The deconfinement phase transition from hadronic matter to quark matter in the interior of compact stars is investigated. The hadronic phase is described in the framework of relativistic mean-field theory, where the s...The deconfinement phase transition from hadronic matter to quark matter in the interior of compact stars is investigated. The hadronic phase is described in the framework of relativistic mean-field theory, where the scalar-isovector 6-meson effec- tive field is also taken into account. The MIT bag model for describing a quark phase is used. The changes of the parameters of phase transition caused by the presence of a δ-meson field are explored. Finally, alterations in the integral and structural parameters of hybrid stars due to both a deconfinement phase transition and inclusion of a δ-meson field are discussed.展开更多
I have studied the initial velocity(Maxwellian and exponential distributions) and the scale height of isolated old(aged≥10^9yr) neutron stars(NSs) at different Galactocentric distances R in three population mod...I have studied the initial velocity(Maxwellian and exponential distributions) and the scale height of isolated old(aged≥10^9yr) neutron stars(NSs) at different Galactocentric distances R in three population models. The smooth time-independent 3-D axisymmetric gravitational potentials(MiyamotoNagai and Paczy n′ski models) were also used. The correlation between these quantities significantly affects the shapes of the profiles and distributions of the simulated sample, because the differences in the initial kick can arise from differences in the formation and evolution of NSs with other physical parameters. The scale height of the density distribution increases systematically with R. I have also shown that the distribution of old NSs in these population models agrees with the observed structure of the Galaxy in terms of initial velocities(1-D and 3-D), as well as the scale height distributions. These distributions tend to have an asymptotic behavior at the point R = 2.75 kpc. This means that the quality of the models can be described in terms of a mean of the fitted Gaussian, and this could also give an overall perspective of the phase space properties of nearby old NSs on a given gravitational potential.展开更多
In this work,we perform a Bayesian inference of the crust-core transition density ρ_(t) of neutron stars based on the neutron-star radius and neutron-skin thickness data using a thermodynamical method.Uniform and Gau...In this work,we perform a Bayesian inference of the crust-core transition density ρ_(t) of neutron stars based on the neutron-star radius and neutron-skin thickness data using a thermodynamical method.Uniform and Gaussian distributions for the ρ_(t) prior were adopted in the Bayesian approach.It has a larger probability of having values higher than 0.1 fm^(−3) for ρ_(t) as the uniform prior and neutron-star radius data were used.This was found to be controlled by the curvature K_(sym) of the nuclear symmetry energy.This phenomenon did not occur if K_(sym) was not extremely negative,namely,K_(sym)>−200 MeV.The value ofρ_(t) obtained was 0.075_(−0.01)^(+0.005) fm^(−3) at a confidence level of 68%when both the neutron-star radius and neutron-skin thickness data were considered.Strong anti-correlations were observed between ρ_(t),slope L,and curvature of the nuclear symmetry energy.The dependence of the three L-K_(sym) correlations predicted in the literature on crust-core density and pressure was quantitatively investigated.The most probable value of 0.08 fm^(−3) for ρ_(t) was obtained from the L-K_(sym) relationship proposed by Holt et al.while larger values were preferred for the other two relationships.展开更多
The impact of symmetry energy slope L on the axial w-mode oscillations is explored, where the range of the con- strained slope L of symmetry energy at saturation density is adopted from 25 MeV to 115 MeV while keeping...The impact of symmetry energy slope L on the axial w-mode oscillations is explored, where the range of the con- strained slope L of symmetry energy at saturation density is adopted from 25 MeV to 115 MeV while keeping the equation of state (EOS) of symmetric nuclear matter fixed. Based on the range of the symmetry energy slope, a constraint on the frequency and damping time of the wi-mode of the neutron star is given. It is found that there is a perfect linear relation between the frequency and the stellar mass for a fixed slope L, and the softer symmetry energy corresponds to a higher frequency. Moreover, it is confirmed that both the frequencies and damping times have a perfect universal scaling behavior for the EOSs with different symmetry energy slopes at saturation density.展开更多
We study the inner structure of a neutron star from a theoretical point of view and the outcome results are compared with observed data. We propose a stiff equation of state relating pressure with matter density. From...We study the inner structure of a neutron star from a theoretical point of view and the outcome results are compared with observed data. We propose a stiff equation of state relating pressure with matter density. From our study we calculate mass(M),compactness(u) and surface redshift(Zs) for two binary millisecond pulsars,namely PSR J1614–2230 and PSR J1903+327,and four X-ray binaries,namely Cen X-3,SMC X-1,Vela X-1 and Her X-1,and compare them with recent observational data.Finally,we examine the stability for such a type of theoretical structure.展开更多
In this paper electron capture on iron group nuclei in crusts of neutron stars in a strong magnetic field is investigated. The results show that the magnetic fields have only a slight effect on electron capture rates ...In this paper electron capture on iron group nuclei in crusts of neutron stars in a strong magnetic field is investigated. The results show that the magnetic fields have only a slight effect on electron capture rates in a range of 10^5 - 10^13g on surfaces of most neutron stars, whereas for some magnetars the magnetic fields range from 10^13 to 10^18 G. The electron capture rates of most iron group nuclei are greatly decreased, reduced by even four orders of magnitude due to the strong magnetic field.展开更多
We study the properties of dense matter at finite temperature with various proton fractions for use in supernova simulations. The relativistic mean-field theory is used to describe homogeneous nuclear matter, while th...We study the properties of dense matter at finite temperature with various proton fractions for use in supernova simulations. The relativistic mean-field theory is used to describe homogeneous nuclear matter, while the Thomas-Fermi approximation is adopted to describe inhomogeneous matter. We also discuss the equation of state of neutron star matter at zero temperature in a wide density range. The equation of state at high densities can be significantly softened by the inclusion of hyperons.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.12021003,11920101003,and 11633001)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB23000000)。
文摘Gravitational waves emanating from binary neutron star inspirals,alongside electromagnetic transients resulting from the aftermath of the GW170817 merger,have been successfully detected.However,the intricate post-merger dynamics that bridge these two sets of observables remain enigmatic.This includes if,and when,the post-merger remnant star collapses to a black hole,and what are the necessary conditions to power a short gamma-ray burst,and other observed electromagnetic counterparts.Our focus is on the detection of gravitational wave(GW)emissions from hyper-massive neutron stars(NSs)formed through binary neutron star(BNS)mergers.Utilizing several kilohertz GW detectors,we simulate BNS mergers within the detection limits of LIGO-Virgo-KARGA O4.Our objective is to ascertain the fraction of simulated sources that may emit detectable post-merger GW signals.For kilohertz detectors equipped with a new cavity design,we estimate that approximately 1.1%-32%of sources would emit a detectable post-merger GW signal.This fraction is contingent on the mass converted into gravitational wave energy,ranging from 0.01M_(sun)to 0.1M_(sun).Furthermore,by evaluating other well-regarded proposed kilohertz GW detectors,we anticipate that the fraction can increase to as much as 2.1%-61%under optimal performance conditions.
基金the National SKA Program of China(2020SKA0120100)research projects of Henan Science and Technology Committee(212300410378)the National NaturalScience Foundationof China(NSFC)grant(U1938116).
文摘It seems that the wealth of information revealed by the multi-messenger observations of the binary neutron star(NS)merger event,GW170817/GRB 170817A/kilonova AT2017gfo,places irreconcilable constraints to models of the prompt emission of this gamma-ray burst(GRB).The observed time delay between the merger of the two NSs and the trigger of the GRB and the thermal tail of the prompt emission can hardly be reproduced by these models simultaneously.We argue that the merger remnant should be an NS(last for,at least,a large fraction of 1 s),and that the difficulty can be alleviated by the delayed formation of the accretion disk due to the absorption of high-energy neutrinos emitted by the NS and the delayed emergence of effective viscosity in the disk.Further,we extend the consideration of the effect of the energy deposition of neutrinos emitted from the NS.If the NS is the central object of a GRB with a distance and duration similar to that of GRB 170817A,thermal emission of the thermal bubble inflated by the NS after the termination of accretion may be detectable.If our scenario is verified,it would be of interest to investigate the cooling of nascent NSs.
文摘Exploring the state of ultra-cold supranuclear dense matter that makes up the cores of massive neutron stars is one of the greatest unresolved problems in modern physics. In this letter, we show that when the interiors of pulsars are made of compressible and dissipative normal matter, the commonly used solution procedures combined with the known EOSs yield widely scattered solutions and poorly determined radii. A remarkable agreement emerges, however, if pulsars harbour cores that are made of incompressible entropy-free superfluids (SuSu-matter) embedded in flat spacetimes. Such supranuclear dense matter should condensate to form false vacua as predicated by non-perterbative QCD vacuum. The solutions here are found to be physically consistent and mathematically elegant, irrespective of the object’s mass. Based thereon, we conclude that the true masses of massive NSs may differ significantly from those revealed by direct observation.
基金supported by the National Natural Science Foundation of China(Nos.12288102 and 12333008)the National Key R&D Program of China(No.2021YFA1600403)+3 种基金support from the International Centre of Supernovae,Yunnan Key Laboratory(No.202302AN360001)the Yunnan Revitalization Talent Support Program-Science&Technology Champion Project(No.202305AB350003)the Yunnan Fundamental Research Projects(Nos.202401BC070007 and 202201B C070003)the science research grants from the China Manned Space Project。
文摘A neutron star(NS)has many extreme physical conditions,and one may obtain some important information about an NS via accreting neutron star binary(ANSB)systems.The upcoming Chinese Space Station Telescope(CSST)provides an opportunity to search for a large sample of ANSB candidates.Our goal is to check the completeness of the potential ANSB samples from CSST data.In this paper,we generate some ANSBs and normal binaries under the CSST photometric system by binary evolution and binary population synthesis method and use a machine learning method to train a classification model.Although the Precision(94.56%)of our machine learning model is as high as before study,the Recall is only about 63.29%.The Precision/Recall is mainly determined by the mass transfer rate between the NSs and their companions.In addition,we also find that the completeness of ANSB samples from CSST photometric data by the machine learning method also depends on the companion mass and the age of the system.ANSB candidates with a low initial mass companion star(0.1 M_(⊙)to 1 M_(⊙))have a relatively high Precision(94.94%)and high Recall(86.32%),whereas ANSB candidates with a higher initial mass companion star(1.1 M_(⊙)to 3 M_(⊙))have similar Precision(93.88%)and quite low Recall(42.67%).Our results indicate that although the machine learning method may obtain a relatively pure sample of ANSBs,a completeness correction is necessary for one to obtain a complete sample.
基金supported by the National Natural Science Foundation of China under grant 12065017Jiangxi Provincial Natural Science Foundation under grant 20224ACB211001support from the Chinese Academy of Sciences(grant Nos.E329A3M1,E32983U8,and E3545KU2)。
文摘Theories of modified gravity suggest that the propagation speed of gravitational waves(GW)v_gmay deviate from the speed of light c.A constraint can be placed on the difference between c and v_gwith a simple method that uses the arrival time delay between GW and electromagnetic wave simultaneously emitted from a burst event.We simulated the joint observation of GW and short gamma-ray burst signals from binary neutron star merger events in different observation campaigns,involving advanced LIGO(aLIGO)in design sensitivity and Einstein Telescope(ET)joint-detected with Fermi/GBM.As a result,the relative precision of constraint on v_gcan reach~10~(-17)(aLIGO)and~10^(-18)(ET),which are one and two orders of magnitude better than that from GW170817,respectively.We continue to obtain the bound of graviton mass m_g≤7.1(3.2)×10~(-20)eV with aLIGO(ET).Applying the Standard-Model Extension test framework,the constraint on v_gallows us to study the Lorentz violation in the nondispersive,nonbirefringent limit of the gravitational sector.We obtain the constraints of the dimensionless isotropic coefficients S_(00)^(4)at mass dimension d=4,which are-1×10^(-15)<S_(00)^(4)<9×10^(-17)for aLIGO and-4×10^(-16)<s_(00)^(4<8<10^(-18))for ET.
基金Project suoported by the National Natural Science Foundation of China (Grant No 10347008).
文摘β decay in the strong magnetic field of the crusts of neutron stars is analysed by an improved method. The reactions ^67Ni(β-)^67Cu and ^62Mn(β-)^62Fe are investigated as examples. The results show that a weak magnetic field has little effect on β decay but a strong magnetic field (B 〉 10^12G) increases β decay rates obviously. The conclusion derived may be crucial to the research of late evolution of neutron stars and nucleosynthesis in r-process.
文摘The equations ofstate of the neutron star matter are calculated in the relativistic mean-field approximation witl different hyperon coupling constants. The properties of neutron stars are studied by solving the OppenheimerVolkoff equation. It manifests the properties of neutron stars - change explicitly as different hyperon coupling constants are concerned.
基金Supported by the National Natural Science Foundation of China
文摘Resonant cyclotron scattering (RCS) in pulsar magnetospheres is considered. The photon diffusion equation (Kompaneets equation) for RCS is derived. The photon system is modeled three dimensionally. Numerical calculations show that there exist not only up scattering but also down scattering of RCS, depending on the parameter space. RCS's possible applications to spectral energy distributions of magnetar candidates and radio quiet isolated neutron stars (INSs) are pointed out. The optical/UV excess of INSs may be caused by the down scattering of RCS. The calculations for RX J1856.5-3754 and RX J0720.4-3125 are presented and compared with their observational data. In our model, the INSs are proposed to be normal neutron stars, although the quark star hypothesis is still possible. The low pulsation amplitude of INSs is a natural consequence in the RCS model.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10047001 and 10275029+2 种基金the State Key Basic Research Development Program under Grant No.G2000-0774-07the CAS Knowledge Innovation Project under Contract No.KJCX2-SW-N02
文摘The numerical results of the populations for the baryon octet in neutron star matter have been presented by solving a set transcendental equations in the framework of the relativistic mean field approximation. The influence of the hyperon interactions on hyperon populations in neutron star matter is discussed. The results manifest that when the ratio of the hyperon-to-nucleon couplings increases, all hyperons appear towards low baryon density direction.
基金Supported by the National Key R&D Program of China (Grant No.2018YFA0404403)the National Natural Science Foundation of China (Grant Nos.11975032,11835001,11790325,and 11961141003)。
文摘A unified description of finite nuclei and equation of state of neutron stars presents both a major challenge and also opportunities for understanding nuclear interactions.Inspired by the Lee-Huang-Yang formula of hardsphere gases,we develop effective nuclear interactions with an additional high-order density dependent term.While the original Skyrme force SLy4 is widely used in studies of neutron stars,there are not satisfactory global descriptions of finite nuclei.The refitted SLy4' force can improve descriptions of finite nuclei but slightly reduces the radius of neutron star of 1.4 M_☉ with M_☉ being the solar mass.We find that the extended SLy4 force with a higher-order density dependence can properly describe properties of both finite nuclei and GW170817 binary neutron stars,including the mass-radius relation and the tidal deformability.This demonstrates the essential role of high-order density dependence at ultrahigh densities.Our work provides a unified and predictive model for neutron stars,as well as new insights for the future development of effective interactions.
基金Supported by the National Natural Science Foundation of China
文摘Using a realistic equation of state (EOS) of strange quark matter, namely, the modified bag model, and considering the constraints on the parameters of EOS by the observational mass limit of neutron stars, we investigate the r-mode instability window of strange stars, and find the same result as in the brief study of Haskell, Degenaar and Ho in 2012 that these instability windows are not consistent with the spin frequency and temperature observations of neutron stars in low mass X-ray binaries.
基金Supported by the National Natural Science Foundation of China(Grant Nos.10603002 and 10773004)
文摘In a second-order r-mode theory, Sa and Tome found that the r-mode oscillation in neutron stars (NSs) could induce stellar differential rotation, which naturally leads to a saturated state of the oscillation. Based on a consideration of the coupling of the r-modes and the stellar spin and thermal evolution, we carefully investigate the influences of the differential rotation on the long-term evolution of isolated NSs and NSs in low-mass X-ray binaries, where the viscous damping of the r-modes and its resultant effects are taken into account. The numerical results show that, for both kinds of NSs, the differential rotation can significantly prolong the duration of the r-modes. As a result, the stars can keep nearly a constant temperature and constant angular velocity for over a thousand years. Moreover, the persistent radiation of a quasi-monochromatic gravitational wave would also be predicted due to the long-term steady r-mode oscillation and stellar rotation. This increases the detectability of gravitational waves from both young isolated and old accreting NSs.
文摘We review theoretical relations between macroscopic properties of neutron stars and microscopic quantities of nuclear matter, such as consistency of hadronic nuclear models and observed masses of neutron stars. The relativistic hadronic field theory, quantum hadrodynamics (QHD), and mean-field approximations of the theory are applied to saturation properties of symmetric nuclear and neutron matter. The equivalence between mean-field approximations and Hartree approximation is emphasized in terms of renormalized effective masses and effective coupling constants of hadrons. This is important to prove that the direct application of mean-field (Hartree) approximation to nuclear and neutron matter is inadequate to examine physical observables. The equations of state (EOS), binding energies of nuclear matter, self-consistency of nuclear matter, are reviewed, and the result of chiral Hartree-Fock ?approximation is shown. Neutron stars and history of nuclear astrophysics, nuclear model and nuclear matter, possibility of hadron and hadron-quark neutron stars are briefly reviewed. The hadronic models are very useful and practical for understanding astrophysical phenomena, nuclear matter and radiation phenomena of nuclei.
基金supported by the Ministry of Education and Sciences of the Republic of Armenia under grant 2008-130
文摘The deconfinement phase transition from hadronic matter to quark matter in the interior of compact stars is investigated. The hadronic phase is described in the framework of relativistic mean-field theory, where the scalar-isovector 6-meson effec- tive field is also taken into account. The MIT bag model for describing a quark phase is used. The changes of the parameters of phase transition caused by the presence of a δ-meson field are explored. Finally, alterations in the integral and structural parameters of hybrid stars due to both a deconfinement phase transition and inclusion of a δ-meson field are discussed.
文摘I have studied the initial velocity(Maxwellian and exponential distributions) and the scale height of isolated old(aged≥10^9yr) neutron stars(NSs) at different Galactocentric distances R in three population models. The smooth time-independent 3-D axisymmetric gravitational potentials(MiyamotoNagai and Paczy n′ski models) were also used. The correlation between these quantities significantly affects the shapes of the profiles and distributions of the simulated sample, because the differences in the initial kick can arise from differences in the formation and evolution of NSs with other physical parameters. The scale height of the density distribution increases systematically with R. I have also shown that the distribution of old NSs in these population models agrees with the observed structure of the Galaxy in terms of initial velocities(1-D and 3-D), as well as the scale height distributions. These distributions tend to have an asymptotic behavior at the point R = 2.75 kpc. This means that the quality of the models can be described in terms of a mean of the fitted Gaussian, and this could also give an overall perspective of the phase space properties of nearby old NSs on a given gravitational potential.
基金supported by the Shanxi Provincial Foundation for Returned Overseas Scholars (No. 20220037)Natural Science Foundation of Shanxi Province (No. 20210302123085)Discipline Construction Project of Yuncheng University
文摘In this work,we perform a Bayesian inference of the crust-core transition density ρ_(t) of neutron stars based on the neutron-star radius and neutron-skin thickness data using a thermodynamical method.Uniform and Gaussian distributions for the ρ_(t) prior were adopted in the Bayesian approach.It has a larger probability of having values higher than 0.1 fm^(−3) for ρ_(t) as the uniform prior and neutron-star radius data were used.This was found to be controlled by the curvature K_(sym) of the nuclear symmetry energy.This phenomenon did not occur if K_(sym) was not extremely negative,namely,K_(sym)>−200 MeV.The value ofρ_(t) obtained was 0.075_(−0.01)^(+0.005) fm^(−3) at a confidence level of 68%when both the neutron-star radius and neutron-skin thickness data were considered.Strong anti-correlations were observed between ρ_(t),slope L,and curvature of the nuclear symmetry energy.The dependence of the three L-K_(sym) correlations predicted in the literature on crust-core density and pressure was quantitatively investigated.The most probable value of 0.08 fm^(−3) for ρ_(t) was obtained from the L-K_(sym) relationship proposed by Holt et al.while larger values were preferred for the other two relationships.
基金supported by the National Natural Science Foundation of China(Grant Nos.10947023 and 11275073)the Fundamental Research Funds for the Central Universities(Grant No.2012ZZ0079)sponsored by SRF for ROCS,SEM
文摘The impact of symmetry energy slope L on the axial w-mode oscillations is explored, where the range of the con- strained slope L of symmetry energy at saturation density is adopted from 25 MeV to 115 MeV while keeping the equation of state (EOS) of symmetric nuclear matter fixed. Based on the range of the symmetry energy slope, a constraint on the frequency and damping time of the wi-mode of the neutron star is given. It is found that there is a perfect linear relation between the frequency and the stellar mass for a fixed slope L, and the softer symmetry energy corresponds to a higher frequency. Moreover, it is confirmed that both the frequencies and damping times have a perfect universal scaling behavior for the EOSs with different symmetry energy slopes at saturation density.
基金support from IUCAA,in Pune,IndiaMSc,in Chennai,India for providing research facilities under the Visiting Associateship Programme
文摘We study the inner structure of a neutron star from a theoretical point of view and the outcome results are compared with observed data. We propose a stiff equation of state relating pressure with matter density. From our study we calculate mass(M),compactness(u) and surface redshift(Zs) for two binary millisecond pulsars,namely PSR J1614–2230 and PSR J1903+327,and four X-ray binaries,namely Cen X-3,SMC X-1,Vela X-1 and Her X-1,and compare them with recent observational data.Finally,we examine the stability for such a type of theoretical structure.
基金Project supported by the National Natural Science Foundation of China (Grant No 10347008).
文摘In this paper electron capture on iron group nuclei in crusts of neutron stars in a strong magnetic field is investigated. The results show that the magnetic fields have only a slight effect on electron capture rates in a range of 10^5 - 10^13g on surfaces of most neutron stars, whereas for some magnetars the magnetic fields range from 10^13 to 10^18 G. The electron capture rates of most iron group nuclei are greatly decreased, reduced by even four orders of magnitude due to the strong magnetic field.
基金supported by National Natural Science Foundation of China(Nos.10675064,11075082)
文摘We study the properties of dense matter at finite temperature with various proton fractions for use in supernova simulations. The relativistic mean-field theory is used to describe homogeneous nuclear matter, while the Thomas-Fermi approximation is adopted to describe inhomogeneous matter. We also discuss the equation of state of neutron star matter at zero temperature in a wide density range. The equation of state at high densities can be significantly softened by the inclusion of hyperons.