To reduce the experimental uncertainty in the 235 U resonance energy region and improve the detection efficiency for neutron total cross section measurements compared with those obtained with the neutron total cross s...To reduce the experimental uncertainty in the 235 U resonance energy region and improve the detection efficiency for neutron total cross section measurements compared with those obtained with the neutron total cross section spectrometer(NTOX), a dedicated lithium-containing scintillation detector has been developed on the Back-n beam line at the China Spallation Neutron Source. The Fast Scintillator-based Neutron Total Cross Section(FAST) spectrometer has been designed based on a Cs2Li La Br6(CLLB) scintillator considering the γ-ray flash and neutron environment on the Back-n beam line. The response of the CLLB scintillator to neutrons and γ-rays was evaluated with different 6Li/7 Li abundance ratios using Geant4. The neutron-γdiscrimination performance of the CLLB has been simulated considering different scintillation parameters, physical designs,and light readout modes. A cubic 6Li-enriched( > 90%) CLLB scintillator, which has a thickness of 4-9 mm and side length of no less than 50 mm to cover the Φ 50 mm neutron beam at the spectrometer position, has been proposed coupling to a side readout SiPM array to construct the FAST spectrometer. The developed simulation techniques for neutron-γ discrimination performance could provide technical support for other neutron-induced reaction measurements on the Back-n beam line.展开更多
To verify the performance of the neutron total cross-sectional spectrometer, the neutron total cross section of carbon is initially measured in the energy range of 1 eV to 20 MeV using the time-of-flight method. The m...To verify the performance of the neutron total cross-sectional spectrometer, the neutron total cross section of carbon is initially measured in the energy range of 1 eV to 20 MeV using the time-of-flight method. The measurement is performed at the Back-n white neutron source with a 76-m time-of-flight path using the China Spallation Neutron Source. A multilayer fast fission chamber with 235U and 238U is employed as the neutron detector. The diameter and thickness of the natural graphite sample are 70 mm and 40 mm, respectively. Signal waveforms are collected using a data acquisition system. Off-line data processing was used to obtain the neutron time-of-flight spectra and transmissions. The uncertainty of the counting statistics is generally approximately 3% for each bin in the energy range of 1–20 MeV. It is determined that the results for the neutron total cross section of carbon obtained using ^235U cells are in good agreement with the results obtained using 238U cells within limits of statistical uncertainty. Moreover, the measured total cross sections show good agreement with the broadening evaluated data.展开更多
The neutron total cross section data of^(9)Be are essential in the nuclear structure model research of light nuclei and nuclear power installations.The neutron total cross section of^(9)Be in the 0.3 eV−120 MeV energy...The neutron total cross section data of^(9)Be are essential in the nuclear structure model research of light nuclei and nuclear power installations.The neutron total cross section of^(9)Be in the 0.3 eV−120 MeV energy region has been measured using time-of-flight and transmission methods with the Neutron Total Cross Sectional Spectrometer(NTOX)based on the multi-cell fast fission chamber at the China Spallation Neutron Source(CSNS)-Back-n white neutron source(Back-n).The fission count-neutron energy distributions of ^(235)U and ^(238)U without samples and with Be samples with three thicknesses were measured in the double-bunch operation mode for a beam power of 100 kW.The Bayesian method was used to eliminate the influence of the double-bunch problem on neutron measurement in the energy region above 10 keV.The neutron total cross section of^(9)Be results was consistent with ENDF/B-VIII.0 evaluation library data in the 0.3 eV−20 MeV energy region.In the energy ranges of 0.3 eV to 10 keV and 0.01 to 20 MeV,the deviations between our results and the evaluation results of ENDF/B-VIII.0 were within 2.5%and 15%,respectively.In the resonance energy region,the measured resonance energies in our experiment were 0.63,0.82,and 2.8 MeV,respectively.The results showed that the total cross section uncertainties of three Be samples were within 2.2%in the energy region below 1 MeV.The total cross section uncertainty of 30 mm Be from ^(235)U was the smallest and less than 5%in the energy region of 0.3 eV−120 MeV.The results of this experiment can provide technical support for further data analysis and related nuclear data evaluation.展开更多
By using the nuclear reaction model for light nuclei, the calculations of the double-differential cross sections of outgoing neutrons from n +^9Be reactions are performed. The total outgoing neutrons are only come fr...By using the nuclear reaction model for light nuclei, the calculations of the double-differential cross sections of outgoing neutrons from n +^9Be reactions are performed. The total outgoing neutrons are only come from the (n, 2n)2a reaction channel. The (n, 2n)2a reaction channel is achieved through six different reaction approach, which are illustrated in this paper. The calculated results agree very well with the measured data at En = 7.1, 8.09, 8.17, 9.09, 9.97 and 10.26 MeV, because the updated level schemes related to the n + ^9Be reactions have been employed in this calculations.展开更多
中子辐射俘获反应在反应堆运行、核装置设计及核天体物理研究中起重要的作用.4πBaF_(2)探测装置有着高时间分辨能力、低中子灵敏度、高探测效率等优点,适合开展中子辐射俘获反应截面数据的测量.中国原子能科学研究院核数据重点实验室...中子辐射俘获反应在反应堆运行、核装置设计及核天体物理研究中起重要的作用.4πBaF_(2)探测装置有着高时间分辨能力、低中子灵敏度、高探测效率等优点,适合开展中子辐射俘获反应截面数据的测量.中国原子能科学研究院核数据重点实验室建立了伽马全吸收装置(Gamma total absorption facility,GTAF),该装置用28块六棱BaF_(2)晶体和12块五棱BaF_(2)晶体构成了外径25 cm,内径10 cm的球壳,覆盖了95.2%的立体角.利用GTAF在中国散裂中子源Back-n束线上,测量了197Au(n,γ)的反应截面数据.测量数据通过能量筛选、PSD方法、晶体多重性筛选进行了初步本底扣除,随后结合对^(nat)C及空样品的测量数据对本底进行了分析及扣除,获得了197Au俘获反应的产额,利用SAMMY程序拟合得到了^(197)Au在1—100 e V的共振能量、中子共振宽度和伽马共振宽度参数.实验测量结果与ENDF/B-VIII.0数据库符合良好,其共振参数存在一定差异,分析原因可能与GTAF能量分辨率、Back-n的中子能谱测量精度、以及实验本底扣除方法相关,这也是下一步工作的重点.展开更多
基金supported by the Key Laboratory of Nuclear Data Foundation(No.JCKY2022201C153)National Natural Science Foundation of China(No.11505216),Educational Commission of Hunan Province of China(No.19B488)Natural Science Foundation of Hunan Province of China(Nos.2021JJ40444 and 2020RC3054).
文摘To reduce the experimental uncertainty in the 235 U resonance energy region and improve the detection efficiency for neutron total cross section measurements compared with those obtained with the neutron total cross section spectrometer(NTOX), a dedicated lithium-containing scintillation detector has been developed on the Back-n beam line at the China Spallation Neutron Source. The Fast Scintillator-based Neutron Total Cross Section(FAST) spectrometer has been designed based on a Cs2Li La Br6(CLLB) scintillator considering the γ-ray flash and neutron environment on the Back-n beam line. The response of the CLLB scintillator to neutrons and γ-rays was evaluated with different 6Li/7 Li abundance ratios using Geant4. The neutron-γdiscrimination performance of the CLLB has been simulated considering different scintillation parameters, physical designs,and light readout modes. A cubic 6Li-enriched( > 90%) CLLB scintillator, which has a thickness of 4-9 mm and side length of no less than 50 mm to cover the Φ 50 mm neutron beam at the spectrometer position, has been proposed coupling to a side readout SiPM array to construct the FAST spectrometer. The developed simulation techniques for neutron-γ discrimination performance could provide technical support for other neutron-induced reaction measurements on the Back-n beam line.
基金supported by the National Key Research and Development Plan(No.2016YFA0401603)the National Natural Science Foundation of China(No.11675155)
文摘To verify the performance of the neutron total cross-sectional spectrometer, the neutron total cross section of carbon is initially measured in the energy range of 1 eV to 20 MeV using the time-of-flight method. The measurement is performed at the Back-n white neutron source with a 76-m time-of-flight path using the China Spallation Neutron Source. A multilayer fast fission chamber with 235U and 238U is employed as the neutron detector. The diameter and thickness of the natural graphite sample are 70 mm and 40 mm, respectively. Signal waveforms are collected using a data acquisition system. Off-line data processing was used to obtain the neutron time-of-flight spectra and transmissions. The uncertainty of the counting statistics is generally approximately 3% for each bin in the energy range of 1–20 MeV. It is determined that the results for the neutron total cross section of carbon obtained using ^235U cells are in good agreement with the results obtained using 238U cells within limits of statistical uncertainty. Moreover, the measured total cross sections show good agreement with the broadening evaluated data.
基金Supported by the National Key Research and Development Plan(2016YFA0401603)the National Natural Science Foundation of China(11675155,11790321)Foundation of President of China Academy of Engineering Physics(YZJLX2016003)。
文摘The neutron total cross section data of^(9)Be are essential in the nuclear structure model research of light nuclei and nuclear power installations.The neutron total cross section of^(9)Be in the 0.3 eV−120 MeV energy region has been measured using time-of-flight and transmission methods with the Neutron Total Cross Sectional Spectrometer(NTOX)based on the multi-cell fast fission chamber at the China Spallation Neutron Source(CSNS)-Back-n white neutron source(Back-n).The fission count-neutron energy distributions of ^(235)U and ^(238)U without samples and with Be samples with three thicknesses were measured in the double-bunch operation mode for a beam power of 100 kW.The Bayesian method was used to eliminate the influence of the double-bunch problem on neutron measurement in the energy region above 10 keV.The neutron total cross section of^(9)Be results was consistent with ENDF/B-VIII.0 evaluation library data in the 0.3 eV−20 MeV energy region.In the energy ranges of 0.3 eV to 10 keV and 0.01 to 20 MeV,the deviations between our results and the evaluation results of ENDF/B-VIII.0 were within 2.5%and 15%,respectively.In the resonance energy region,the measured resonance energies in our experiment were 0.63,0.82,and 2.8 MeV,respectively.The results showed that the total cross section uncertainties of three Be samples were within 2.2%in the energy region below 1 MeV.The total cross section uncertainty of 30 mm Be from ^(235)U was the smallest and less than 5%in the energy region of 0.3 eV−120 MeV.The results of this experiment can provide technical support for further data analysis and related nuclear data evaluation.
基金Supported by the National Natural Science Foundation of China under Grant No.10547005
文摘By using the nuclear reaction model for light nuclei, the calculations of the double-differential cross sections of outgoing neutrons from n +^9Be reactions are performed. The total outgoing neutrons are only come from the (n, 2n)2a reaction channel. The (n, 2n)2a reaction channel is achieved through six different reaction approach, which are illustrated in this paper. The calculated results agree very well with the measured data at En = 7.1, 8.09, 8.17, 9.09, 9.97 and 10.26 MeV, because the updated level schemes related to the n + ^9Be reactions have been employed in this calculations.
文摘中子辐射俘获反应在反应堆运行、核装置设计及核天体物理研究中起重要的作用.4πBaF_(2)探测装置有着高时间分辨能力、低中子灵敏度、高探测效率等优点,适合开展中子辐射俘获反应截面数据的测量.中国原子能科学研究院核数据重点实验室建立了伽马全吸收装置(Gamma total absorption facility,GTAF),该装置用28块六棱BaF_(2)晶体和12块五棱BaF_(2)晶体构成了外径25 cm,内径10 cm的球壳,覆盖了95.2%的立体角.利用GTAF在中国散裂中子源Back-n束线上,测量了197Au(n,γ)的反应截面数据.测量数据通过能量筛选、PSD方法、晶体多重性筛选进行了初步本底扣除,随后结合对^(nat)C及空样品的测量数据对本底进行了分析及扣除,获得了197Au俘获反应的产额,利用SAMMY程序拟合得到了^(197)Au在1—100 e V的共振能量、中子共振宽度和伽马共振宽度参数.实验测量结果与ENDF/B-VIII.0数据库符合良好,其共振参数存在一定差异,分析原因可能与GTAF能量分辨率、Back-n的中子能谱测量精度、以及实验本底扣除方法相关,这也是下一步工作的重点.