期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Study on Dynamic Mechanical Behavior of Al-Mg-Si Alloy
1
作者 陶小旺 LIU Jibo +3 位作者 LIU Xianbin CHEN Jianbin WANG Yonggang 汪小锋 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期454-462,共9页
The dynamic mechanical behavior of Al-Mg-Si alloy was investigated under different strain rates by mechanical property and microstructure characterization,constitutive behavior analysis and numerical simulation in the... The dynamic mechanical behavior of Al-Mg-Si alloy was investigated under different strain rates by mechanical property and microstructure characterization,constitutive behavior analysis and numerical simulation in the present study.As the strain rate increases,the yield strength,ultimate tensile strength and elongation increase first,then remain almost constant,and finally increase.The alloy always exhibits a typical ductile fracture mode,not depending on the strain rate.However,as the strain rate increases,the number of dimples gradually increases.Tensile deformation can refine grains,however,the grain structure is slightly affected by the strain rate.An optimized Johnson-Cook constitutive equation was used to describe the mechanical behavior and obtained by fitting the true stress-strain curves.The parameter C was described by a function related to the strain rate.The fitting true stress-strain curves by the JC model agree very well with the experimental true stress-strain curves.The true stress-strain curves calculated by the finite element numerical simulation agree well with the experimental true stress-strain curves. 展开更多
关键词 al-mg-si alloy strain rate mechanical property MICROSTRUCTURE Johnson-Cook model finite element simulation
下载PDF
Corrosion mechanism associated with Mg_2Si and Si particles in Al-Mg-Si alloys 被引量:21
2
作者 曾锋利 卫中领 +4 位作者 李劲风 李朝兴 谭星 张昭 郑子樵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2559-2567,共9页
The electrochemical behaviors and coupling behaviors of the Mg2Si and Si phases with α(Al) were investigated, the corrosion morphologies of Al alloys containing Mg2Si and Si particles were observed, and the corrosi... The electrochemical behaviors and coupling behaviors of the Mg2Si and Si phases with α(Al) were investigated, the corrosion morphologies of Al alloys containing Mg2Si and Si particles were observed, and the corrosion mechanism associated with them in Al-Mg-Si alloys was advanced. The results show that Si particle is always cathodic to the alloy base, Mg2Si is anodic to the alloy base and corrosion occurs on its surface at the beginning. However, during its corrosion process, the preferential dissolution of Mg and the enrichment of Si make Mg2Si transform to cathode from anode, leading to the anodic dissolution and corrosion of the alloy base at its adjacent periphery at a later stage. As the mole ratio of Mg to Si in an Al-Mg-Si alloy is less than 1.73, it contains Mg2Si and Si particles simultaneously in the grain boundary area, and corrosion initiates on the Mg2Si surface and the precipitate-free zone (PFZ) at the adjacent periphery of Si particle. As corrosion time is extended, Si particle leads to severe anodic dissolution and corrosion of the PFZ at its adjacent periphery, expedites the polarity transformation between Mg2Si and the PFZ and accelerates the corrosion of PFZ at the adjacent periphery of Mg2Si particle. 展开更多
关键词 al-mg-si alloys intergranular corrosion corrosion mechanism electrochemical behaviors MG2SI SI
下载PDF
Effects of high temperature pre-straining on natural aging and bake hardening response of Al-Mg-Si alloys 被引量:3
3
作者 贾志宏 丁立鹏 +2 位作者 翁瑶瑶 文章 刘庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期924-929,共6页
The influences of high temperature pre-straining (HT-PS) on the natural aging and bake hardening of Al?Mg?Si alloys were investigated by Vickers microhardness measurements, differential scanning calorimetry (DSC) anal... The influences of high temperature pre-straining (HT-PS) on the natural aging and bake hardening of Al?Mg?Si alloys were investigated by Vickers microhardness measurements, differential scanning calorimetry (DSC) analysis and transmission electron microscopy (TEM) characterization. The results show that pre-straining at 170 °C immediately after quenching can effectively resolve the rather high T4 temper hardness caused by the conventional room temperature (RT) pre-straining treatment, and give a better bake hardening response (BHR) after paint-bake cycle. HT-PS 7% at 170 °C for 10 min is chosen as the optimum process as it provides lower T4 temper hardness and better BHR. The simultaneous introduction of dislocations and Cluster (2) can significantly suppress the natural aging and promote the precipitation of β″ phase, and reduce the effects of deformation hardening by dynamic recovery. 展开更多
关键词 al-mg-si alloy high temperature pre-straining natural aging bake hardening response
下载PDF
Combined effect of deformation and artificial aging on mechanical properties of Al-Mg-Si Alloy 被引量:10
4
作者 Michal KOLAR Ketill Olav PEDERSEN +1 位作者 Sverre GULBRANDSEN-DAHL Knut MARTHINSEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1824-1830,共7页
The effect of pre-deformation followed by or together with artificial aging on the mechanical properties as strength and ductility of an AA6060 aluminium alloy was studied. AA6060 was initially cast, homogenized and e... The effect of pre-deformation followed by or together with artificial aging on the mechanical properties as strength and ductility of an AA6060 aluminium alloy was studied. AA6060 was initially cast, homogenized and extruded according to standard industrial practice. The extruded material was then subjected to a solution heat treatment and subsequently artificial aging after (sequential mode) and during (simultaneous mode) various combinations of deformation (0-10%) and heat treatments. The aging behaviour and mechanical properties were characterized in terms of Vickers hardness and tensile testing. It is found that precipitation kinetics and associated mechanical response, in terms of hardness and tensile properties are strongly affected by pre-deformations. In terms of aging behaviour, kinetics is accelerated and the peak strength generally increases. Comparing sequential mode and simultaneous mode, the latter seems to give overall better mechanical properties and after considerably shorter aging times. The results of the two modes of pre-deformation are compared and discussed in view of differences in processing conditions and microstructure characteristics. 展开更多
关键词 al-mg-si alloys artificial aging PRE-DEFORMATION tensile properties
下载PDF
Effect of isothermal compression and subsequent heat treatment on grain structures evolution of Al-Mg-Si alloy 被引量:7
5
作者 LI Ze-cheng DENG Yun-lai +2 位作者 YUAN Man-fa ZHANG Jin GUO Xiao-bin 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2670-2686,共17页
The constitutive relationships of Al-Mg-Si alloy deformed at various strain rates,temperatures and strains were studied.The microstructure evolution was quantitatively characterized and analyzed,including recrystalliz... The constitutive relationships of Al-Mg-Si alloy deformed at various strain rates,temperatures and strains were studied.The microstructure evolution was quantitatively characterized and analyzed,including recrystallization fraction,grain sizes,local misorientation,geometrically necessary dislocation and stored strain energy during hot deformation and subsequent heat treatment.The results show that the dislocation density and energy storage are linear with ln Z during hot deformation and subsequent heat treatment,indicating continuous recrystallization occurring in both processes.With higher ln Z,the dislocation density declines more sharply during subsequent heat treatment.When ln Z is less than 28,dislocation density becomes more stable with less reduction during subsequent heat treatment after hot deformation.As these dislocations distribute along low angle grain boundaries,the subgrain has good stability during subsequent heat treatment.The main recrystallization mechanism during hot deformation is continuous dynamic recrystallization,accompanied by geometric dynamic recrystallization at higher ln Z. 展开更多
关键词 al-mg-si alloy Zener-Hollomon parameter DISLOCATION RECRYSTALLIZATION grain boundaries
下载PDF
Influence of different solution methods on microstructure, precipitation behavior and mechanical properties of Al-Mg-Si alloy 被引量:8
6
作者 Guan-jun GAO Chen HE +3 位作者 Yong LI Jia-dong LI Zhao-dong WANG R. D. K. MISRA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第5期839-847,共9页
The effects of different solution methods on microstructure, mechanical properties and precipitation behavior of Al-Mg-Si alloy were investigated by scanning electron microscope, transmission electron microscope, tens... The effects of different solution methods on microstructure, mechanical properties and precipitation behavior of Al-Mg-Si alloy were investigated by scanning electron microscope, transmission electron microscope, tensile test, and differential scanning calorimetry. The results revealed that the recrystallized grains of the alloy after the solution treatment with hot air became smaller and more uniform, compared with solution treatment with electrical resistance. The texture of the alloy after two solution treatment methods was different. More rotated cube components were formed through solution treatment with electrical resistance, which was better for improving the drawability of the alloy. The strength of the alloy under the solution treatment with hot air was higher before stamping, because of the small uniform grains and many clusters in the matrix. The alloy solution treated with hot air also possessed good bake hardenability, because the transformation occurred on more clusters in the matrix. 展开更多
关键词 al-mg-si alloy solution method recrystallization grain TEXTURE mechanical property precipitation activation energy
下载PDF
Microstructure evolution and precipitation behavior of Al-Mg-Si alloy during initial aging 被引量:2
7
作者 Ya-ya Zheng Bing-hui Luo +1 位作者 Wei Xie Wang Li 《China Foundry》 SCIE CAS CSCD 2023年第1期57-62,共6页
The microstructure evolution and precipitation behavior of Al-Mg-Si alloy during initial aging were studied using hardness testing, conductivity testing, differential scanning calorimetry(DSC), and high resolution tra... The microstructure evolution and precipitation behavior of Al-Mg-Si alloy during initial aging were studied using hardness testing, conductivity testing, differential scanning calorimetry(DSC), and high resolution transmission electron microscopy(HRTEM). The results show that the precipitation sequence of the Al-Mg-Si alloy during initial aging can be represented as: supersaturated solid solution → spherical Mg/Si clusters → needle-like Guinier Preston(GP) zone → β″. Clusters are completely coherent with the Al matrix. The GP zone with relatively complete independent lattice parameters that differ slightly from the Al matrix parameters, is oriented along the direction of <111>Aland lying on {111}Alplane. The strength of the Al-Mg-Si alloy is greatly enhanced by the threedimensional strain field that exists between the β″ phase and the two {200}Alplanes. After aging at 170 ℃ for 6 h, the hardness reaches the peak of 127 HV and remains for a long time. At this stage, the electrical conductivity keeps relatively stable due to the formation of coherent precipitates(Mg/Si clusters/GP zones) and the reduction in solute atom concentration in the Al matrix. The severe coarsening and decreased number density of the β″ phase during the over-aging stage result in a significant decrease in the hardness. 展开更多
关键词 al-mg-si alloy precipitation behavior strengthening mechanism strain field β″
下载PDF
Characterizations of precipitation behavior of Al-Mg-Si alloys under different heat treatments 被引量:2
8
作者 Hui Li Jia-yi Wang +2 位作者 Hai-tao Jiang Zheng-feng Lu Zhen-feng Zhu 《China Foundry》 SCIE 2018年第2期89-96,共8页
The solidification-precipitation behavior of Al-Mg-Si multicomponent alloys has long been an absorbing topic. Experiments were carried out to analyze the precipitation behaviors of Al-Mg-Si alloys under different heat... The solidification-precipitation behavior of Al-Mg-Si multicomponent alloys has long been an absorbing topic. Experiments were carried out to analyze the precipitation behaviors of Al-Mg-Si alloys under different heat treatments. All specimens were homogenized at 570 ℃ for 8 h, and then solution treated at 540 ℃ for 55 min. Subsequently, the specimens were age treated for different times at temperatures of 100 ℃, 150 ℃ and 180 ℃, respectively. The experimental results show that the occurrence of dispersed free zones (DFZ) is caused by the uneven distribution of dispersed phase. During the aging process, pre-β" phases form at the initial stage and an aging temperature of 100 ℃is too low to complete the transformation of pre-β" to β". At 150℃, the precipitation sequence is concluded as SSSS-pre-β"-pre-β"+β"-β"-β'-β. Moreover, changes in sizes and densities of the pre-β", β"and β' phases during the aging process has an important influence on the evolution of microhardness and electrical resistivity. The microhardness peak value of 150 ℃ is similar to that of 180 ℃, which is -141 HV. While, at 100℃, the microhardness increases slowly, and the attainable value is 127 HV up to 19 days. When the aging temperature is 100 ℃, the electrical resistivity has the highest average value. When the aging temperature exceeds 100 ℃, with the occurrence and growth of β"and β', the resistivity has a distinct decrease with prolonged aging time. 展开更多
关键词 al-mg-si alloy heat treatment precipitation behavior electrical resistivity
下载PDF
Formation and characterization of self-lubricated carbide layer on AA6082 Al-Mg-Si aluminum alloy by electrical discharge alloying process 被引量:1
9
作者 Wang-Chih CHEN Hung-Mao LIN Jun-Yen UAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第12期3205-3218,共14页
The surface modification on the AA6082 Al?Mg?Si aging-hardenable aluminum alloy was investigated by electricaldischarge alloying (EDA) process. Kerosene, used as a dielectric fluid, was pyrolytically decomposed into c... The surface modification on the AA6082 Al?Mg?Si aging-hardenable aluminum alloy was investigated by electricaldischarge alloying (EDA) process. Kerosene, used as a dielectric fluid, was pyrolytically decomposed into carbon for the formationof a self-lubricated carbide layer on the aluminum alloy surface during EDA process. Transmission electron microscopy (TEM)image found that the self-lubricated carbide layer was a multi-phase material with carbides and graphite. As a result, theEDA-modified aluminum alloy had a negligible wear rate of ~2?10?4 mg/m (c. f. ~1.1?10?2 mg/m for aluminum alloy substrate).Notably, a new characteristic was found that the EDA-processed carbide layer was a soft magnet, which improved theelectromagnetic interference (EMI) shielding performance of the alloy. 展开更多
关键词 al-mg-si aluminum alloy surface modification electrical discharge alloying SELF-LUBRICATING pyrolytic carbon electromagnetic interference shielding
下载PDF
Effects of dynamic cooling pre-aging treatment on mechanical properties and paint-bake hardening behavior of Al-Mg-Si alloy automotive sheets 被引量:1
10
作者 GAO Guan-jun LI Xi-wu +5 位作者 YAN Li-zhen XIONG Bai-qing LI Zhi-hui ZHANG Yong-an WEN Kai LI Ya-nan 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第3期950-959,共10页
In the industrial production, the dynamic cooling pre-aging treatment was employed to replace the isothermal pre-aging during the continuous heat treatment production of Al-Mg-Si alloy automotive sheets. The effects o... In the industrial production, the dynamic cooling pre-aging treatment was employed to replace the isothermal pre-aging during the continuous heat treatment production of Al-Mg-Si alloy automotive sheets. The effects of dynamic cooling pre-aging treatment on mechanical properties and paint-bake hardening behavior of an Al-Mg-Si alloy sheet are proposed in this study. The scanning electron microscopy, transmission electron microscopy, tensile test, Vickers hardness test, and differential scanning calorimetry were conducted for the purpose. It was found that the dynamic cooling pre-aging treatment at low temperature region led to the decreasing of cluster II, resulting in the deterioration of the ability of the paint-bake hardening. With the increase of the cooling pre-aging temperature, the increasing of cluster II effectively improved the stability against natural aging and the paint-bake hardening ability. The optimized dynamic cooling pre-aging temperature was ~150 ℃. In this condition, the hardness increase of the alloy sheet with pre-aging treatment is low during storage at room temperature. The high yield strength increment is obtained after paint-bake hardening. 展开更多
关键词 al-mg-si alloy mechanical properties paint-bake hardening behavior dynamic cooling pre-aging precipitates
下载PDF
Quantitative analysis of influence of α-Al(MnFeCr)Si dispersoids on hot deformation and microstructural evolution of Al-Mg-Si alloys 被引量:1
11
作者 Hiromi NAGAUMI Jian QIN +2 位作者 Cheng-bin YU Xiao-guo WANG Lin-sheng WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第6期1805-1821,共17页
The microstructural evolution of AA6061 and Mn-bearing Al-Mg-Si-Cu alloys was studied by compression tests that were carried out between 300 and 500 °C with a wide range of strain rates. Compared to the AA6061 al... The microstructural evolution of AA6061 and Mn-bearing Al-Mg-Si-Cu alloys was studied by compression tests that were carried out between 300 and 500 °C with a wide range of strain rates. Compared to the AA6061 alloy, the large amount of α-Al(MnFeCr)Si dispersoids in the Mn-bearing alloy yielded a significant increase in the flow stress under all deformation conditions. The effects of the deformation parameters on the evolution of the microstructure were studied using electronic backscatter diffraction measurements. The predominant softening mechanism of both alloys was dynamic recovery. The presence of α dispersoids in Mn-bearing alloys effectively refined the size of substructures with misorientation angles in the range of 2°-5°, which retarded the dynamic recovery. To predict the subgrain size under various deformation conditions, the threshold stresses that were caused by α dispersoids were calculated by the modified Orowan equation and incorporated into a conventional constitutive equation. The subgrain size that was predicted by the modified constitutive equation showed satisfactory agreement with the experimental measurements. 展开更多
关键词 al-mg-si alloy hot deformation α-Al(MnFeCr)Si dispersoids SUBSTRUCTURE dynamic softening threshold stress Z parameter
下载PDF
Effect of Equal Channel Angular Extrusion on the Microstructures and Properties of Two Extruded Al-Mg-Si Alloys
12
作者 G.W.Lorimer 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第5期623-629,共7页
The effect of equal channel angular extrusion (ECAE) on the microstructure of two Al-Mg-Si extrusion alloys was investigated by high resolution electron backscattered diffraction (EBSD) using a field emission gun ... The effect of equal channel angular extrusion (ECAE) on the microstructure of two Al-Mg-Si extrusion alloys was investigated by high resolution electron backscattered diffraction (EBSD) using a field emission gun scanning electron microscope (FEG-SEM) and a transmission electron microscope (TEM). Two contrasting alloys: a dilute alloy, based on alloy 6061 and a concentrated alloy, based on alloy 6069 were employed for this research. It has been found that prior ECAE to extrusion promotes high angle grain boundaries (HAGBs) in the extrusions, and the increase in HAGBs ratio is due to the large shear deformation involved in the process of ECAE. Tensile testing results show that a further ageing treatment strengthens the alloys after extrusion and the ECAE processed extrusions are more ductile than conventional extrusions. 展开更多
关键词 Equal channel angular extrusion Electron backscattered diffraction al-mg-si alloys
下载PDF
Thermal Analysis of the Impact of RT Storage Time on the Strengthening of an Al-Mg-Si Alloy
13
作者 A. Hayoune 《Materials Sciences and Applications》 2012年第7期460-466,共7页
Despite the large number of papers dealing with the Al -Mg-Si system, the decomposition of the supersaturated solid solutions during the different aging treatments and therefore, the related hardening is still under d... Despite the large number of papers dealing with the Al -Mg-Si system, the decomposition of the supersaturated solid solutions during the different aging treatments and therefore, the related hardening is still under debate. In the present work, by the use of simple techniques such as the Differential Scanning Calorimetry (DSC), Microhardness measurements and X-Ray Diffraction (XRD) analysis the precipitation behaviour and the impact of prior natural aging after homogenization on the subsequent microstructural and mechanical evolutions during artificial heat treatment at 160℃, of nuclear aluminium alloy Al-1.32% Mg-0.53% Si (% wt.) alloy, were identified. Through DSC, lattice parameter and microhardness measurements, the precipitation sequence were indirectly identified to be as follows: supersaturated solid solution (S.S.S.) → atomic clusters and GP zones →β” →β’ →β. The evolution of the mechanical properties during natural aging has been explained to be due to GP zones and atomic clusters formation. Storage at RT was found to have an important effect on the mechanical properties of the studied alloy. Under the light of the DSC results, this effect was explained by a slower precipitation kinetics of the β” phase;the atomic clusters and GP zones, which formed during storage at RT and the low concentration of the quenched-in vacancies in the stored samples have a delaying effect upon the nucleation of β” phase. Consequently, the final microstructure developed in these samples is coarse;hence lower mechanical properties are obtained. 展开更多
关键词 al-mg-si alloy PRECIPITATION DSC NATURAL AGING MICROHARDNESS
下载PDF
Effects of Pre-Strain on Bake Hardenability and Precipitation Behavior of Al-Mg-Si Automotive Body Sheets
14
作者 Guanjun Gao Lizhen Yan Xiwu Li 《Journal of Materials Science and Chemical Engineering》 2024年第7期53-64,共12页
The study investigates the effects of pre-strain on the bake hardenability and precipitation behavior of Al-Mg-Si automotive body sheets. The scanning electron microscopy, transmission electron microscopy, tensile tes... The study investigates the effects of pre-strain on the bake hardenability and precipitation behavior of Al-Mg-Si automotive body sheets. The scanning electron microscopy, transmission electron microscopy, tensile test, Vickers hardness test, and differential scanning calorimetry were conducted for the purpose. It was found that the pre-strain treatment partially inhibits the natural aging hardening effect but cannot completely eliminate it. The pre-straining significantly enhances the bake hardening effect, with the 5% pre-strain sample showing the highest increase in yield strength and hardness. The formation of fine β" precipitates and dislocation structures contribute to the observed strengthening. Additionally, the study highlights the importance of optimizing pre-strain levels to achieve the best balance between strength and ductility in bake-hardened aluminum alloys. 展开更多
关键词 al-mg-si alloy PRE-STRAIN Bake Hardenability Precipitation Behavior CLUSTERS
下载PDF
Aging behavior and mechanical properties of 6013 aluminum alloy processed by severe plastic deformation 被引量:8
15
作者 刘满平 蒋婷慧 +5 位作者 王俊 刘强 吴振杰 Ying-da YU Pl C.SKARET Hans J.ROVEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3858-3865,共8页
Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparative... Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66-112 nm while the average dislocation density is in the range of 1.20×10^14-1.70×10^14 m^-2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP. 展开更多
关键词 al-mg-si aluminum alloy severe plastic deformation equal-channel angular pressing aging behavior precipitation kinetics mechanical properties strengthening mechanisms
下载PDF
Microstructural evolution of Al-0.66Mg-0.85Si alloy during homogenization 被引量:2
16
作者 闫丽珍 张永安 +4 位作者 李锡武 李志辉 王锋 刘红伟 熊柏青 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期939-945,共7页
The microstructural evolution of Al-0.66Mg-0.85Si alloy was investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimet... The microstructural evolution of Al-0.66Mg-0.85Si alloy was investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The as-cast microstructure is typical dendritical structure, consisting of α(Al), Al(FeMn)Si, Mg2Si, AlCuMgSi and Si phases. The electron diffraction analyses indicate that the Al(FeMn)Si phase is Al15(FeMn)3Si2 and the AlCuMgSi phase is Q(Al1.9CuMg4.1Si3.3). There are two kinds of Mg2Si phases in the as-cast microstructure. One is formed in the casting process, and the other is formed in the cooling process after casting process is finished. The phases have different crystal structures. After homogenization treatment at 545 ℃ for 20 h, Mg2Si, Si and Q intermetallic compounds are dissolved into matrix completely, and the remaining phases are α(Al) and Al15(FeMn)3Si2. The size of Al15(FeMn)3Si2 phase is decreased, and the phase is spheroidized and distributes along grain boundary discontinuously. The Zn-containing phases are not found during solidification and homogenization process. 展开更多
关键词 al-mg-si alloy microstructural evolution HOMOGENIZATION intermetallic compound
下载PDF
Precipitation of metastable phases and its effect on electrical resistivity of Al-0.96Mg_2Si alloy during aging 被引量:3
17
作者 崔立新 刘振兴 +4 位作者 赵晓光 唐建国 刘科 刘星兴 钱晨 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2266-2274,共9页
The precipitation behavior and its influence on the electrical resistivity of the Al-0.96Mg2Si alloy during aging were investigated with in-situ resistivity measurement and transmission electron microscopy (TEM). Th... The precipitation behavior and its influence on the electrical resistivity of the Al-0.96Mg2Si alloy during aging were investigated with in-situ resistivity measurement and transmission electron microscopy (TEM). The precipitates of the peak aged alloy include both β" and if, but the amount ratio of β" to β" varies with the aging temperature and time increasing. The precipitates during aging at 175 ℃ are dominated by needle-like β" phases (including pre-β" phase), the size of which increases with the time prolonging, but does not increase substantially after further aging. The evolution of electrical conductivity is directly related to such microstructural evolution. However, the hardness of the alloy stays at the peak value for a long term. When the alloy is aged at 195 ℃, the ratio of β" to β' becomes the main factor to influence relative resistivity (Ap) value. The higher the temperature is, the smaller the ratio is, and the faster the Ap value decreases. Moreover, the hardness peak drops with the decrease of the ratio. With the size and distribution parameters measured from TEM images, a semi-quantitative relationship between precipitates and the electrical resistivity was established. 展开更多
关键词 al-mg-si alloy metastable phases electrical resistivity AGING PRECIPITATE
下载PDF
长期中子辐照Al-Mg-Si合金的压缩力学行为
18
作者 胡凌 郑航 +3 位作者 冯琦杰 周韦 叶想平 卢磊 《爆炸与冲击》 EI CAS CSCD 北大核心 2019年第12期44-53,共10页
利用材料试验机及分离式霍普金森压杆装置,开展长期中子辐照后的Al-Mg-Si合金(反应堆内实际服役近30年的LT21铝合金)在不同温度和应变率下压缩力学行为的实验研究,获得了实验温度、应变率对其屈服强度及流动应力的影响规律。结果表明:... 利用材料试验机及分离式霍普金森压杆装置,开展长期中子辐照后的Al-Mg-Si合金(反应堆内实际服役近30年的LT21铝合金)在不同温度和应变率下压缩力学行为的实验研究,获得了实验温度、应变率对其屈服强度及流动应力的影响规律。结果表明:材料在一定的温度区间(−40~300℃)和应变率区间(0.001~3000 s−1)内,分别呈现出较为明显的温度效应与正应变率效应;其中在较低的温度(−80~−40℃)和较高的应变率(3000~5000 s−1)区间力学性能受温度和应变率变化的影响较小;当温度升至300℃时,材料的塑性变形行为已趋于理想塑性流动。根据前述实验结果,计及材料内部的微观辐照缺陷对力学性能的影响,建立了考虑辐照损伤的Zerilli-Armstrong本构模型,模型的计算结果与前述实验结果吻合较好。结合文献中高纯铝的微观辐照缺陷的演化数据,对不同快中子辐照剂量LT21铝合金的屈服强度,以及另两个来自反应堆内不同受辐照区域试样在不同应变率和温度下的屈服强度进行了计算。上述研究表明,本文建立的考虑辐照损伤的Z-A本构方程不仅能较好地反映长期中子辐照后的Al-Mg-Si合金宏观应力和应变、应变率、温度等参数的关系,也能针对位错运动及辐照硬化机制进行较好地描述,并且能够为反应堆内相应结构元件的设计、运行和安全评估提供一定的参考。 展开更多
关键词 冲击动力学 辐照损伤 Z-A本构模型 SHPB 中子辐照al-mg-si合金
下载PDF
Structures and formation mechanisms of dislocation-induced precipitates in relation to the age-hardening responses of Al-Mg-Si alloys 被引量:26
19
作者 Y.X.Lai W.Fan +2 位作者 M.J.Yin C.L.Wu J.H.Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第6期127-138,共12页
In the slightly deformed Al-Mg-Si alloys,dislocation-induced precipitates are frequently observed,and they usually line up,forming sophisticated precipitation microstructures.Using atomic-resolution electron microscop... In the slightly deformed Al-Mg-Si alloys,dislocation-induced precipitates are frequently observed,and they usually line up,forming sophisticated precipitation microstructures.Using atomic-resolution electron microscopy in association with hardness measurements,we systematically investigated these precipitates in relation to the age-hardening responses of the alloys.Our study reveals that the majority of dislocation-induced complex precipitates are actually short-range ordered while long-range disordered polycrystalline precipitates and multiphase composite precipitates,including polycrystalline U2 precipitates,B’/U2,B’-2/U2,B’/B’-2/U2 and’/U2 composite precipitates.It is suggested that the formation of these complex precipitates is mainly owing to a high nucleation rate and rapid growth of different precipitate phases parallel to the associated dislocation lines.Since dislocation-induced precipitates consume more Mg than Si from the matrix and have a high formation kinetics,they will have different impacts on the matrix precipitation in different types of Al-Mg-Si alloys.Our results further demonstrate that for the"normally-β"-hardened"alloy,their formation leads to a coarser precipitate microstructure in the matrix,whereas for the"normally-β’-hardened"alloy,their formation reverses the precipitation pathway in the matrix,resulting in a reduced age-hardening potential of the former alloy and an improved age-hardening potential of the latter alloy. 展开更多
关键词 al-mg-si alloys Precipitation DISLOCATION AGE-HARDENING Electron MICROSCOPY
原文传递
Improvement of elevated-temperature strength and recrystallization resistance via Mn-containing dispersoid strengthening in Al-Mg-Si 6082 alloys 被引量:8
20
作者 Chen Li Kun Liu X.-Grant Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第4期135-143,共9页
The precipitation behavior of Mn-containing dispersoids in Al-Mg-Si 6082 alloys with different Mn contents(0,0.5 and 1.0 wt%)during various heat treatments(300–500℃)was investigated.The effects of dispersoids on ele... The precipitation behavior of Mn-containing dispersoids in Al-Mg-Si 6082 alloys with different Mn contents(0,0.5 and 1.0 wt%)during various heat treatments(300–500℃)was investigated.The effects of dispersoids on elevated-temperature strength and recrystallization resistance during hot-rolling and post-rolling annealing were evaluated.The results showed that the dispersoids in the Mn-containing alloys(0.5 and 1.0%)began to precipitate at 350℃and reached the optimum conditions after 2–4 h at 400℃.However,the dispersoids coarsened with increasing holding time at temperatures above450℃.After the peak precipitation treatment at 400℃for 2 h,the yield strength at 300℃increased from 28 MPa(base alloy free of Mn)to 55 MPa(alloy with 0.5%Mn)and 70 MPa(alloy with 1%Mn),respectively,demonstrating a significant dispersoid strengthening effect at elevated temperature.In addition,the dispersoids were thermally stable at 300℃for up to 1000 h holding owing to its relative high precipitation temperature(350–400℃),leading to the superior constant mechanical performance at elevated temperature during the long service life.During hot rolling and post-rolling annealing,the presence of a large amount of dispersoids results in the higher Zener drag PZcompared with base alloy and then significantly improved the recrystallization resistance.The alloy containing 0.5%Mn exhibited the highest recrystallization resistance among three experimental alloys studied during the post-rolling process,likely resulted from the lower coarsening rate of dispersoids and the lower dispersoids free zone. 展开更多
关键词 al-mg-si 6082 alloy Mn addition DISPERSOID precipitation ELEVATED-TEMPERATURE STRENGTH RECRYSTALLIZATION RESISTANCE
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部