Neutrophil extracellular traps are primarily composed of DNA and histones and are released by neutrophils to promote inflammation and thrombosis when stimulated by various inflammato ry reactions.Neutrophil extracellu...Neutrophil extracellular traps are primarily composed of DNA and histones and are released by neutrophils to promote inflammation and thrombosis when stimulated by various inflammato ry reactions.Neutrophil extracellular trap formation occurs through lytic and non-lytic pathways that can be further classified by formation mechanisms.Histones,von Willebrand factor,fibrin,and many other factors participate in the interplay between inflammation and thrombosis.Neuroimmunothrombosis summarizes the intricate interplay between inflammation and thrombosis during neural development and the pathogenesis of neurological diseases,providing cutting-edge insights into post-neurotrauma thrombotic events.The blood-brain barrier defends the brain and spinal cord against external assaults,and neutrophil extracellular trap involvement in blood-brain barrier disruption and immunothrombosis contributes substantially to secondary injuries in neurological diseases.Further research is needed to understand how neutrophil extracellular traps promote blood-brain barrier disruption and immunothrombosis,but recent studies have demonstrated that neutrophil extracellular traps play a crucial role in immunothrombosis,and identified modulators of neuro-immunothrombosis.However,these neurological diseases occur in blood vessels,and the mechanisms are unclear by which neutrophil extracellular traps penetrate the blood-brain barrier to participate in immunothrombosis in traumatic brain injury.This review discusses the role of neutrophil extracellular traps in neuro-immunothrombosis and explores potential therapeutic interventions to modulate neutrophil extracellular traps that may reduce immunothrombosis and improve traumatic brain injury outcomes.展开更多
Rheumatoid arthritis(RA)is a prevalent autoimmune disease whose main features include chronic synovial inflammation,bone destruction,and joint degeneration.Neutrophils are often considered to be the first responders t...Rheumatoid arthritis(RA)is a prevalent autoimmune disease whose main features include chronic synovial inflammation,bone destruction,and joint degeneration.Neutrophils are often considered to be the first responders to inflammation and are a key presence in the inflammatory milieu of RA.Neutrophil extracellular traps(NETs),a meshwork of DNA-histone complexes and proteins released by activated neutrophils,are widely involved in the pathophysiology of autoimmune diseases,especially RA,in addition to playing a key role in the neutrophil innate immune response.NETs have been found to be an important source of citrullinated autoantigen antibodies and inflammatory factor release,which can activate RA synovial fibroblasts(FLS)and cause joint damage.This article reviews the role of NETs in the pathophysiology of RA,demonstrating the application of multiple molecules with various therapies,with a view to informing the discovery and development of novel biomarkers and therapeutic targets for RA.展开更多
Objective:Neutrophil extracellular traps(NETs)produced by tumor-infiltrating neutrophils(TINs)are associated with poor prognosis in patients with several types of cancer.However,the mechanisms underlying the involveme...Objective:Neutrophil extracellular traps(NETs)produced by tumor-infiltrating neutrophils(TINs)are associated with poor prognosis in patients with several types of cancer.However,the mechanisms underlying the involvement of NETs in glioma progression remain largely unknown.This study aimed to elucidate the roles of NETs in biological processes that drive the crosstalk between glioma progression and the tumor microenvironment.Methods:Neutrophil infiltration and NETs formation were investigated in glioma tissue through immunohistochemistry,and their relationships with clinicopathological features and outcomes were statistically evaluated.The effects of NETs on glioma cell progression were studied in a co-culture system.In vivo and in vitro experiments validated the reactive oxygen species activity and cytokine production of TINs,as well as the ERK signaling pathway activation and the metastasis of gliomas.Results:Neutrophil infiltration and NETs formation were induced in high-grade glioma compared with low-grade glioma.NETs induced by TINs were determined to be an oncogenic marker of high-grade gliomas and to be involved in cell proliferation and invasion.NETs overproduction promoted glioma cell proliferation,migration,and invasion.Furthermore,HMGB1 was found to bind to RAGE and activate the NF-κB signaling pathway in vitro.In addition,NETs stimulated the NF-κB signaling pathway,thus promoting IL-8 secretion in glioblastoma.Subsequently,IL-8 recruited neutrophils which in turn mediated NETs formation via the PI3 K/AKT/ROS axis in TINs.Conclusions:Our results suggest that NETs produced by TINs mediate the crosstalk between glioma progression and the tumor microenvironment by regulating the HMGB1/RAGE/IL-8 axis.Targeting NETs formation or IL-8 secretion may be an effective approach to inhibit glioma progression.展开更多
BACKGROUND The development of venous thromboembolism(VTE) is associated with high mortality among gastric cancer(GC) patients. Neutrophil extracellular traps(NETs) have been reported to correlate with the prothromboti...BACKGROUND The development of venous thromboembolism(VTE) is associated with high mortality among gastric cancer(GC) patients. Neutrophil extracellular traps(NETs) have been reported to correlate with the prothrombotic state in some diseases, but are rarely reported in GC patients.AIM To investigate the effect of NETs on the development of cancer-associated thrombosis in GC patients.METHODS The levels of NETs in blood and tissue samples of patients were analyzed by ELISA, flow cytometry, and immunofluorescence staining. NET generation and hypercoagulation of platelets and endothelial cells(ECs) in vitro were observed by immunofluorescence staining. NET procoagulant activity(PCA) was determined by fibrin formation and thrombin–antithrombin complex(TAT) assays.Thrombosis in vivo was measured in a murine model induced by flow stenosis in the inferior vena cava(IVC).RESULTS NETs were likely to form in blood and tissue samples of GC patients compared with healthy individuals. In vitro studies showed that GC cells and their conditioned medium, but not gastric mucosal epithelial cells, stimulated NET release from neutrophils. In addition, NETs induced a hypercoagulable state of platelets by upregulating the expression of phosphatidylserine and Pselectin on the cells. Furthermore, NETs stimulated the adhesion of normal platelets on glass surfaces. Similarly, NETs triggered the conversion of ECs to hypercoagulable phenotypes by downregulating the expression of their intercellular tight junctions but upregulating that of tissue factor. Treatment of normal platelets or ECs with NETs augmented the level of plasma fibrin formation and the TAT complex. In the models of IVC stenosis, tumor-bearing mice showed a stronger ability to form thrombi, and NETs abundantly accumulated in the thrombi of tumorbearing mice compared with control mice. Notably, the combination of deoxyribonuclease I,activated protein C, and sivelestat markedly abolished the PCA of NETs.CONCLUSION GC-induced NETs strongly increased the risk of VTE development both in vitro and in vivo. NETs are potential therapeutic targets in the prevention and treatment of VTE in GC patients.展开更多
Gastrointestinal(GI)cancer is a high-risk malignancy and is characterized by high mortality and morbidity worldwide.Neutrophil extracellular traps(NETs),a weblike structure consisting of chromatin DNA with intersperse...Gastrointestinal(GI)cancer is a high-risk malignancy and is characterized by high mortality and morbidity worldwide.Neutrophil extracellular traps(NETs),a weblike structure consisting of chromatin DNA with interspersed cytoplasmic and granule proteins,are extruded by activated neutrophils to entrap and kill bacteria and fungi.However,accumulating evidence shows that NETs are related to the progression and metastasis of cancer.In clinical studies,NETs infiltrate primary GI cancer tissues and are even more abundant in metastatic lesions.The quantity of NETs in peripheral blood is revealed to be associated with ascending clinical tumour stages,indicating the role of NETs as a prognostic markers in GI cancer.Moreover,several inhibitors of NETs or NET-related proteins have been discovered and used to exert anti-tumour effects in vitro or in vivo,suggesting that NETs can be regarded as targets in the treatment of GI cancer.In this review,we will focus on the role of NETs in gastric cancer and colorectal cancer,generalizing their effects on tumour-related thrombosis,invasion and metastasis.Recent reports are also listed to show the latest evidences of how NETs affect GI cancer.Additionally,notwithstanding the scarcity of systematic studies elucidating the underlying mechanisms of the interaction between NETs and cancer cells,we highlight the potential importance of NETs as biomarkers and anti-tumour therapeutic targets.展开更多
Thrombotic events,both arterial and venous,are a major health concern worldwide. Further,autoimmune diseases,such as systemic lupus erythematosus,anti-neutrophil cytoplasmic antibody(ANCA)-associated vasculitis,and an...Thrombotic events,both arterial and venous,are a major health concern worldwide. Further,autoimmune diseases,such as systemic lupus erythematosus,anti-neutrophil cytoplasmic antibody(ANCA)-associated vasculitis,and antiphospholipid syndrome,predispose to thrombosis,and thereby push the risk for these morbid events even higher. In recent years,neutrophils have been identified as important players in both arterial and venous thrombosis. Specifically,chromatin-based structures called neutrophil extracellular traps(NETs) play a key role in activating the coagulation cascade,recruiting platelets,and serving as scaffolding upon which the thrombus can be assembled. At the same time,neutrophils and NETs are emerging as important mediators of pathogenic inflammation in the aforementioned autoimmune diseases. Here,we first review the general role of NETs in thrombosis. We then posit that exaggerated NET release contributes to the prothrombotic diatheses of systemic lupus erythematosus,ANCA-associated vasculitis,and antiphospholipid syndrome.展开更多
Objective:To investigate the presence of neutrophil extracellular traps(NETs) in vivo by analysing intestinal sections from experimentally Eimeria bovis-and naturally Eimeria arloingi-infected animals.Methods:Intestin...Objective:To investigate the presence of neutrophil extracellular traps(NETs) in vivo by analysing intestinal sections from experimentally Eimeria bovis-and naturally Eimeria arloingi-infected animals.Methods:Intestinal samples of Eimeria arloingi-and Eimeria bovis-infected animals were analysed by using immunohistochemical and fluorescence approach by using monoclonal antibodies.Results:Classical NET components were confirmed by co-localization of extracellular DNA being decorated with neutrophil elastase and histones in Eimeria-infected tissue samples.Here,extrusion of NETs was exclusively detected in intestinal polymorphonuclear neutrophils infiltrating Eimeria-infected sites.In vivo NETs were either found in close proximity or in direct contact to different Eimeria stages suggesting a stage-independent process.NETs were also found within the gut lumen driven by polymorphonuclear neutrophils that were contacting released oocysts.Conclusions:We postulate that NETs might play an important role in innate defence reactions in coccidiosis therefore significantly altering the outcome of infection.展开更多
BACKGROUND Non-small cell lung cancer(NSCLC)is the primary form of lung cancer,and the combination of chemotherapy with immunotherapy offers promising treatment options for patients suffering from this disease.However...BACKGROUND Non-small cell lung cancer(NSCLC)is the primary form of lung cancer,and the combination of chemotherapy with immunotherapy offers promising treatment options for patients suffering from this disease.However,the emergence of drug resistance significantly limits the effectiveness of these therapeutic strategies.Consequently,it is imperative to devise methods for accurately detecting and evaluating the efficacy of these treatments.AIM To identify the metabolic signatures associated with neutrophil extracellular traps(NETs)and chemoimmunotherapy efficacy in NSCLC patients.METHODS In total,159 NSCLC patients undergoing first-line chemoimmunotherapy were enrolled.We first investigated the characteristics influencing clinical efficacy.Circulating levels of NETs and cytokines were measured by commercial kits.Liquid chromatography tandem mass spectrometry quantified plasma metabolites,and differential metabolites were identified.Least absolute shrinkage and selection operator,support vector machine-recursive feature elimination,and random forest algorithms were employed.By using plasma metabolic profiles and machine learning algorithms,predictive metabolic signatures were established.RESULTS First,the levels of circulating interleukin-8,neutrophil-to-lymphocyte ratio,and NETs were closely related to poor efficacy of first-line chemoimmunotherapy.Patients were classed into a low NET group or a high NET group.A total of 54 differential plasma metabolites were identified.These metabolites were primarily involved in arachidonic acid and purine metabolism.Three key metabolites were identified as crucial variables,including 8,9-epoxyeicosatrienoic acid,L-malate,and bis(monoacylglycerol)phosphate(18:1/16:0).Using metabolomic sequencing data and machine learning methods,key metabolic signatures were screened to predict NET level as well as chemoimmunotherapy efficacy.CONCLUSION The identified metabolic signatures may effectively distinguish NET levels and predict clinical benefit from chemoimmunotherapy in NSCLC patients.展开更多
Objective The hypersensitivity of the kidney makes it susceptible to hypoxia injury.The involvement of neutrophil extracellular traps(NETs)in renal injury resulting from hypobaric hypoxia(HH)has not been reported.In t...Objective The hypersensitivity of the kidney makes it susceptible to hypoxia injury.The involvement of neutrophil extracellular traps(NETs)in renal injury resulting from hypobaric hypoxia(HH)has not been reported.In this study,we aimed to investigate the expression of NETs in renal injury induced by HH and the possible underlying mechanism.Methods A total of 24 SD male rats were divided into three groups(n=8 each):normal control group,hypoxia group and hypoxia+pyrrolidine dithiocarbamate(PDTC)group.Rats in hypoxia group and hypoxia+PDTC group were placed in animal chambers with HH which was caused by simulating the altitude at 7000 meters(oxygen partial pressure about 6.9 kPa)for 7 days.PDTC was administered at a dose of 100 mg/kg intraperitoneally once daily for 7 days.Pathological changes of the rat renal tissues were observed under a light microscope;the levels of serum creatinine(SCr),blood urea nitrogen(BUN),cell-free DNA(cf-DNA)and reactive oxygen species(ROS)were measured;the expression levels of myeloperoxidase(MPO),citrullinated histone H3(cit-H3),B-cell lymphoma 2(Bcl-2),Bax,nuclear factor kappa B(NF-κB)p65 and phospho-NF-κB p65(p-NF-κB p65)in rat renal tissues were detected by qRT-qPCR and Western blotting;the localization of NF-κB p65 expression in rat renal tissues was observed by immunofluorescence staining and the expression changes of NETs in rat renal tissues were detected by multiplex fluorescence immunohistochemical staining.Results After hypoxia,the expression of NF-κB protein in renal tissues was significantly increased,the levels of SCr,BUN,cf-DNA and ROS in serum were significantly increased,the formation of NETs in renal tissues was significantly increased,and a large number of tubular dilatation and lymphocyte infiltration were observed in renal tissues.When PDTC was used to inhibit NF-κB activation,NETs formation in renal tissue was significantly decreased,the expression level of Bcl-2 in renal tissues was significantly increased,the expression level of Bax was significantly decreased,and renal injury was significantly alleviated.Conclusion HH induces the formation of NETs through the NF-κB signaling pathway,and it promotes apoptosis and aggravates renal injury by decreasing Bcl-2 and increasing Bax expression.展开更多
Background:Mammary health is important for transition dairy cows and has been well recognized to exert decisive effects on animal welfare.However,the factors influencing mammary health are still unclear.Differential s...Background:Mammary health is important for transition dairy cows and has been well recognized to exert decisive effects on animal welfare.However,the factors influencing mammary health are still unclear.Differential somatic cell count(DSCC)could reflect the mastitis risk since it is the percentage of neutrophils plus lymphocytes in total somatic cells and could be reflective of mammary health of dairy cows.This work aimed to investigate the assessment and prognosis of the health of transition cows based on blood neutrophil extracellular traps(NETs).Results:Eighty-four transition Holstein dairy cows were selected.The serum was sampled in all the animals at week 1 pre-and postpartum,and milk was sampled at week 1 postpartum.Based on the DSCC in milk at week 1,cows with lower(7.4%±4.07%,n=15)and higher(83.3%±1.21%,n=15)DSCCs were selected.High DSCC cows had higher levels of red blood cell counts(P<0.05),hemoglobin(P=0.07),and hematocrit(P=0.05),higher concentrations of serum oxidative variables[reactive oxygen species(P<0.05),malondialdehyde(P<0.05),protein carbonyl(P<0.05),and 8-hydroxy-2-deoxyguanosine(P=0.07)],higher levels of serum and milk NETs(P<0.05)and blood-milk barrier indicators,including serumβ-casein(P=0.05)and milk immunoglobulin G2(P=0.09),than those of low DSCC cows.In addition,lower concentrations of serum nutrient metabolites(cholesterol and albumin)(P<0.05)and a lower level of serum deoxyribonuclease I(P=0.09)were observed in high DSCC cows than in low DSCC cows.Among the assessments performed using levels of the three prepartum serum parameters(NETs,deoxyribonuclease I andβ-casein),the area under the curve(0.973)of NETs was the highest.In addition,the sensitivity(1.00)and specificity(0.93)were observed for the discrimination of these cows using NETs levels with a critical value of 32.2 ng/mL(P<0.05).Conclusions:The formation of NETs in blood in transition dairy cows may damage the integrity of the blood-milk barrier and thereby increase the risk for mastitis in postpartum cows.展开更多
Tumor-promoting niche after incomplete surgery resection(SR)can lead to more aggressive local progression and distant metastasis with augmented angiogenesis-immunosuppressive tumor microenvironment(TME).Herein,elevate...Tumor-promoting niche after incomplete surgery resection(SR)can lead to more aggressive local progression and distant metastasis with augmented angiogenesis-immunosuppressive tumor microenvironment(TME).Herein,elevated neutrophil extracellular traps(NETs)and cancer-associated neurotransmitters(CANTs,e.g.,catecholamines)are firstly identified as two of the dominant inducements.Further,an injectable fibrin-alginate hydrogel with high tissue adhesion has been constructed to specifically co-deliver NETs inhibitor(DNase I)-encapsulated PLGA nanoparticles and an unselectiveβ-adrenergic receptor blocker(propranolol).The two components(i.e.,fibrin and alginate)can respond to two triggers(thrombin and Ca2+,respectively)in postoperative bleeding to gelate,shaping into an interpenetrating network(IPN)featuring high strength.The continuous release of DNase I and PR can wreck NETs and antagonize catecholamines to decrease microvessel density,blockade myeloid-derived suppressor cells,secrete various proinflammatory cytokines,potentiate natural killer cell function and hamper cytotoxic T cell exhaustion.The reprogrammed TME significantly suppress locally residual and distant tumors,induce strong immune memory effects and thus inhibit lung metastasis.Thus,targetedly degrading NETs and blocking CANTs enabled by this in-situ IPN-based hydrogel drug depot provides a simple and efficient approach against SR-induced cancer recurrence and metastasis.展开更多
Ischemic stroke(IS)is the main killer that endangers the health and life of middle-aged and elderly people worldwide.Inflammatory response plays a key regulatory role in the pathogenesis of IS.After cerebral ischemia,...Ischemic stroke(IS)is the main killer that endangers the health and life of middle-aged and elderly people worldwide.Inflammatory response plays a key regulatory role in the pathogenesis of IS.After cerebral ischemia,leukocytes rapidly accumulate,penetrate blood vessels and infiltrate brain tissue,thereby activating pro-inflammatory factors in the infarct area to exacerbate nerve damage.Neutrophil extracellular traps(NETs)are fibrous mesh structures released by activated neutrophils outside the cell,which can clear pathogens and cell debris,induce inflammatory responses and exacerbate cerebral ischemia-reperfusion(CI/R)injury.Various traditional Chinese medicines and their main components can improve neurological function defects after IS,and inhibit the formation of NETs,which opens up a new direction for the study of traditional Chinese medicines in the prevention and treatment of IS.展开更多
基金supported by the National Natural Science Foundation of China,No.82271399(to XC)the Project of Tianjin Applied Basic and Multiple Support Research,No.21JCZDJC00910(to XC)+4 种基金the Scientific Research Program of Tianjin Education Commission(Natural Science)of China,No.2019ZD034(to QD)the Science&Technology Program of Tianjin for Cultivation of Innovative Talents,No.22JRRCRC00020(to QD)the Tianjin Medical University"Clinical Talent Training 123 Climbing Plan"(to XC)the Tianjin Health Care Elite Prominent Young Doctor Development Program(to XC)the Young and Middle-aged Backbone Innovative Talent Program(to XC)。
文摘Neutrophil extracellular traps are primarily composed of DNA and histones and are released by neutrophils to promote inflammation and thrombosis when stimulated by various inflammato ry reactions.Neutrophil extracellular trap formation occurs through lytic and non-lytic pathways that can be further classified by formation mechanisms.Histones,von Willebrand factor,fibrin,and many other factors participate in the interplay between inflammation and thrombosis.Neuroimmunothrombosis summarizes the intricate interplay between inflammation and thrombosis during neural development and the pathogenesis of neurological diseases,providing cutting-edge insights into post-neurotrauma thrombotic events.The blood-brain barrier defends the brain and spinal cord against external assaults,and neutrophil extracellular trap involvement in blood-brain barrier disruption and immunothrombosis contributes substantially to secondary injuries in neurological diseases.Further research is needed to understand how neutrophil extracellular traps promote blood-brain barrier disruption and immunothrombosis,but recent studies have demonstrated that neutrophil extracellular traps play a crucial role in immunothrombosis,and identified modulators of neuro-immunothrombosis.However,these neurological diseases occur in blood vessels,and the mechanisms are unclear by which neutrophil extracellular traps penetrate the blood-brain barrier to participate in immunothrombosis in traumatic brain injury.This review discusses the role of neutrophil extracellular traps in neuro-immunothrombosis and explores potential therapeutic interventions to modulate neutrophil extracellular traps that may reduce immunothrombosis and improve traumatic brain injury outcomes.
基金supported by grants from the National Traditional Chinese Medicine Inheritance and Innovation Project Fund(Development and Reform Office[2022]366)National Key Discipline of Traditional Chinese Medicine(Traditional Chinese Medicine[2023]No.85)+2 种基金the Ministry of Science and Technology National Key Research and Development Program Chinese Medicine Modernization Research Key Project(2018YFC1705204)National Nature Fund Program(82074373,82274490,82205090)Anhui Provincial Laboratory of Applied Basis and Development of Internal Medicine of Modern Traditional Chinese Medicine(2016080503B041).
文摘Rheumatoid arthritis(RA)is a prevalent autoimmune disease whose main features include chronic synovial inflammation,bone destruction,and joint degeneration.Neutrophils are often considered to be the first responders to inflammation and are a key presence in the inflammatory milieu of RA.Neutrophil extracellular traps(NETs),a meshwork of DNA-histone complexes and proteins released by activated neutrophils,are widely involved in the pathophysiology of autoimmune diseases,especially RA,in addition to playing a key role in the neutrophil innate immune response.NETs have been found to be an important source of citrullinated autoantigen antibodies and inflammatory factor release,which can activate RA synovial fibroblasts(FLS)and cause joint damage.This article reviews the role of NETs in the pathophysiology of RA,demonstrating the application of multiple molecules with various therapies,with a view to informing the discovery and development of novel biomarkers and therapeutic targets for RA.
基金supported by The National Natural Science Foundation of China(Grant No.81702972,Grant No.81874204)China Postdoctoral Science Foundation(Grant No.2018M640305,Grant No.2019M660074)+4 种基金The Research Project of the Chinese Society of Neuro-oncology,CACA(Grant No.CSNO-2016-MSD12)Heilongjiang Postdoctoral Science Foundation(Grant No.LBH-Z18103)The Research Project of the Health and Family Planning Commission of Heilongjiang Province(Grant No.2017–201)Postgraduate Research&Practice Innovation Program of Harbin Medical University(Grant No.YJSKYCX2018-94HYD)The Young and middle-aged Science Foundation of Harbin Medical University(Grant No.KYCX2018-08)。
文摘Objective:Neutrophil extracellular traps(NETs)produced by tumor-infiltrating neutrophils(TINs)are associated with poor prognosis in patients with several types of cancer.However,the mechanisms underlying the involvement of NETs in glioma progression remain largely unknown.This study aimed to elucidate the roles of NETs in biological processes that drive the crosstalk between glioma progression and the tumor microenvironment.Methods:Neutrophil infiltration and NETs formation were investigated in glioma tissue through immunohistochemistry,and their relationships with clinicopathological features and outcomes were statistically evaluated.The effects of NETs on glioma cell progression were studied in a co-culture system.In vivo and in vitro experiments validated the reactive oxygen species activity and cytokine production of TINs,as well as the ERK signaling pathway activation and the metastasis of gliomas.Results:Neutrophil infiltration and NETs formation were induced in high-grade glioma compared with low-grade glioma.NETs induced by TINs were determined to be an oncogenic marker of high-grade gliomas and to be involved in cell proliferation and invasion.NETs overproduction promoted glioma cell proliferation,migration,and invasion.Furthermore,HMGB1 was found to bind to RAGE and activate the NF-κB signaling pathway in vitro.In addition,NETs stimulated the NF-κB signaling pathway,thus promoting IL-8 secretion in glioblastoma.Subsequently,IL-8 recruited neutrophils which in turn mediated NETs formation via the PI3 K/AKT/ROS axis in TINs.Conclusions:Our results suggest that NETs produced by TINs mediate the crosstalk between glioma progression and the tumor microenvironment by regulating the HMGB1/RAGE/IL-8 axis.Targeting NETs formation or IL-8 secretion may be an effective approach to inhibit glioma progression.
基金Supported by National Natural Science Foundation of China,No.81672355.
文摘BACKGROUND The development of venous thromboembolism(VTE) is associated with high mortality among gastric cancer(GC) patients. Neutrophil extracellular traps(NETs) have been reported to correlate with the prothrombotic state in some diseases, but are rarely reported in GC patients.AIM To investigate the effect of NETs on the development of cancer-associated thrombosis in GC patients.METHODS The levels of NETs in blood and tissue samples of patients were analyzed by ELISA, flow cytometry, and immunofluorescence staining. NET generation and hypercoagulation of platelets and endothelial cells(ECs) in vitro were observed by immunofluorescence staining. NET procoagulant activity(PCA) was determined by fibrin formation and thrombin–antithrombin complex(TAT) assays.Thrombosis in vivo was measured in a murine model induced by flow stenosis in the inferior vena cava(IVC).RESULTS NETs were likely to form in blood and tissue samples of GC patients compared with healthy individuals. In vitro studies showed that GC cells and their conditioned medium, but not gastric mucosal epithelial cells, stimulated NET release from neutrophils. In addition, NETs induced a hypercoagulable state of platelets by upregulating the expression of phosphatidylserine and Pselectin on the cells. Furthermore, NETs stimulated the adhesion of normal platelets on glass surfaces. Similarly, NETs triggered the conversion of ECs to hypercoagulable phenotypes by downregulating the expression of their intercellular tight junctions but upregulating that of tissue factor. Treatment of normal platelets or ECs with NETs augmented the level of plasma fibrin formation and the TAT complex. In the models of IVC stenosis, tumor-bearing mice showed a stronger ability to form thrombi, and NETs abundantly accumulated in the thrombi of tumorbearing mice compared with control mice. Notably, the combination of deoxyribonuclease I,activated protein C, and sivelestat markedly abolished the PCA of NETs.CONCLUSION GC-induced NETs strongly increased the risk of VTE development both in vitro and in vivo. NETs are potential therapeutic targets in the prevention and treatment of VTE in GC patients.
基金Supported by Natural Science Foundation of Beijing for Youth,No.7214252Program of Military Medicine for Youth,No.QNF19055.
文摘Gastrointestinal(GI)cancer is a high-risk malignancy and is characterized by high mortality and morbidity worldwide.Neutrophil extracellular traps(NETs),a weblike structure consisting of chromatin DNA with interspersed cytoplasmic and granule proteins,are extruded by activated neutrophils to entrap and kill bacteria and fungi.However,accumulating evidence shows that NETs are related to the progression and metastasis of cancer.In clinical studies,NETs infiltrate primary GI cancer tissues and are even more abundant in metastatic lesions.The quantity of NETs in peripheral blood is revealed to be associated with ascending clinical tumour stages,indicating the role of NETs as a prognostic markers in GI cancer.Moreover,several inhibitors of NETs or NET-related proteins have been discovered and used to exert anti-tumour effects in vitro or in vivo,suggesting that NETs can be regarded as targets in the treatment of GI cancer.In this review,we will focus on the role of NETs in gastric cancer and colorectal cancer,generalizing their effects on tumour-related thrombosis,invasion and metastasis.Recent reports are also listed to show the latest evidences of how NETs affect GI cancer.Additionally,notwithstanding the scarcity of systematic studies elucidating the underlying mechanisms of the interaction between NETs and cancer cells,we highlight the potential importance of NETs as biomarkers and anti-tumour therapeutic targets.
基金Supported by NIH K08AR066569a career development award from the Burroughs Wellcome Fund(Knight JS)Kazzaz NM was supported by Security Forces Hospital Program,Ministry of Interior,Riyadh,Saudi Arabia
文摘Thrombotic events,both arterial and venous,are a major health concern worldwide. Further,autoimmune diseases,such as systemic lupus erythematosus,anti-neutrophil cytoplasmic antibody(ANCA)-associated vasculitis,and antiphospholipid syndrome,predispose to thrombosis,and thereby push the risk for these morbid events even higher. In recent years,neutrophils have been identified as important players in both arterial and venous thrombosis. Specifically,chromatin-based structures called neutrophil extracellular traps(NETs) play a key role in activating the coagulation cascade,recruiting platelets,and serving as scaffolding upon which the thrombus can be assembled. At the same time,neutrophils and NETs are emerging as important mediators of pathogenic inflammation in the aforementioned autoimmune diseases. Here,we first review the general role of NETs in thrombosis. We then posit that exaggerated NET release contributes to the prothrombotic diatheses of systemic lupus erythematosus,ANCA-associated vasculitis,and antiphospholipid syndrome.
基金Supported by the German Research Foundation(DFG,Grant No.TA 219/4-1)
文摘Objective:To investigate the presence of neutrophil extracellular traps(NETs) in vivo by analysing intestinal sections from experimentally Eimeria bovis-and naturally Eimeria arloingi-infected animals.Methods:Intestinal samples of Eimeria arloingi-and Eimeria bovis-infected animals were analysed by using immunohistochemical and fluorescence approach by using monoclonal antibodies.Results:Classical NET components were confirmed by co-localization of extracellular DNA being decorated with neutrophil elastase and histones in Eimeria-infected tissue samples.Here,extrusion of NETs was exclusively detected in intestinal polymorphonuclear neutrophils infiltrating Eimeria-infected sites.In vivo NETs were either found in close proximity or in direct contact to different Eimeria stages suggesting a stage-independent process.NETs were also found within the gut lumen driven by polymorphonuclear neutrophils that were contacting released oocysts.Conclusions:We postulate that NETs might play an important role in innate defence reactions in coccidiosis therefore significantly altering the outcome of infection.
基金the National Natural Science Foundation of Hunan Province,No.2023JJ60039Natural Science Foundation of Hunan Province National Health Commission,No.B202303027655+3 种基金Natural Science Foundation of Changsha Science and Technology Bureau,No.Kq2208150Wu Jieping Foundation of China,No.320.6750.2022-22-59,320.6750.2022-17-41Guangdong Association of Clinical Trials(GACT)/Chinese Thoracic Oncology Group(CTONG)and Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer,No.2017B030314120.
文摘BACKGROUND Non-small cell lung cancer(NSCLC)is the primary form of lung cancer,and the combination of chemotherapy with immunotherapy offers promising treatment options for patients suffering from this disease.However,the emergence of drug resistance significantly limits the effectiveness of these therapeutic strategies.Consequently,it is imperative to devise methods for accurately detecting and evaluating the efficacy of these treatments.AIM To identify the metabolic signatures associated with neutrophil extracellular traps(NETs)and chemoimmunotherapy efficacy in NSCLC patients.METHODS In total,159 NSCLC patients undergoing first-line chemoimmunotherapy were enrolled.We first investigated the characteristics influencing clinical efficacy.Circulating levels of NETs and cytokines were measured by commercial kits.Liquid chromatography tandem mass spectrometry quantified plasma metabolites,and differential metabolites were identified.Least absolute shrinkage and selection operator,support vector machine-recursive feature elimination,and random forest algorithms were employed.By using plasma metabolic profiles and machine learning algorithms,predictive metabolic signatures were established.RESULTS First,the levels of circulating interleukin-8,neutrophil-to-lymphocyte ratio,and NETs were closely related to poor efficacy of first-line chemoimmunotherapy.Patients were classed into a low NET group or a high NET group.A total of 54 differential plasma metabolites were identified.These metabolites were primarily involved in arachidonic acid and purine metabolism.Three key metabolites were identified as crucial variables,including 8,9-epoxyeicosatrienoic acid,L-malate,and bis(monoacylglycerol)phosphate(18:1/16:0).Using metabolomic sequencing data and machine learning methods,key metabolic signatures were screened to predict NET level as well as chemoimmunotherapy efficacy.CONCLUSION The identified metabolic signatures may effectively distinguish NET levels and predict clinical benefit from chemoimmunotherapy in NSCLC patients.
基金This work was supported by grants from Guangxi Medical High-level Key Talents/139/(No.G201901010)Natural Science Foundation of Guangxi Province(No.GXNSFDA198008).
文摘Objective The hypersensitivity of the kidney makes it susceptible to hypoxia injury.The involvement of neutrophil extracellular traps(NETs)in renal injury resulting from hypobaric hypoxia(HH)has not been reported.In this study,we aimed to investigate the expression of NETs in renal injury induced by HH and the possible underlying mechanism.Methods A total of 24 SD male rats were divided into three groups(n=8 each):normal control group,hypoxia group and hypoxia+pyrrolidine dithiocarbamate(PDTC)group.Rats in hypoxia group and hypoxia+PDTC group were placed in animal chambers with HH which was caused by simulating the altitude at 7000 meters(oxygen partial pressure about 6.9 kPa)for 7 days.PDTC was administered at a dose of 100 mg/kg intraperitoneally once daily for 7 days.Pathological changes of the rat renal tissues were observed under a light microscope;the levels of serum creatinine(SCr),blood urea nitrogen(BUN),cell-free DNA(cf-DNA)and reactive oxygen species(ROS)were measured;the expression levels of myeloperoxidase(MPO),citrullinated histone H3(cit-H3),B-cell lymphoma 2(Bcl-2),Bax,nuclear factor kappa B(NF-κB)p65 and phospho-NF-κB p65(p-NF-κB p65)in rat renal tissues were detected by qRT-qPCR and Western blotting;the localization of NF-κB p65 expression in rat renal tissues was observed by immunofluorescence staining and the expression changes of NETs in rat renal tissues were detected by multiplex fluorescence immunohistochemical staining.Results After hypoxia,the expression of NF-κB protein in renal tissues was significantly increased,the levels of SCr,BUN,cf-DNA and ROS in serum were significantly increased,the formation of NETs in renal tissues was significantly increased,and a large number of tubular dilatation and lymphocyte infiltration were observed in renal tissues.When PDTC was used to inhibit NF-κB activation,NETs formation in renal tissue was significantly decreased,the expression level of Bcl-2 in renal tissues was significantly increased,the expression level of Bax was significantly decreased,and renal injury was significantly alleviated.Conclusion HH induces the formation of NETs through the NF-κB signaling pathway,and it promotes apoptosis and aggravates renal injury by decreasing Bcl-2 and increasing Bax expression.
基金financially supported by grants from the China-USA Intergovernmental Collaborative Project in S&T Innovation under the National Key R&D Program (No.2018YFE0111700,Beijing)。
文摘Background:Mammary health is important for transition dairy cows and has been well recognized to exert decisive effects on animal welfare.However,the factors influencing mammary health are still unclear.Differential somatic cell count(DSCC)could reflect the mastitis risk since it is the percentage of neutrophils plus lymphocytes in total somatic cells and could be reflective of mammary health of dairy cows.This work aimed to investigate the assessment and prognosis of the health of transition cows based on blood neutrophil extracellular traps(NETs).Results:Eighty-four transition Holstein dairy cows were selected.The serum was sampled in all the animals at week 1 pre-and postpartum,and milk was sampled at week 1 postpartum.Based on the DSCC in milk at week 1,cows with lower(7.4%±4.07%,n=15)and higher(83.3%±1.21%,n=15)DSCCs were selected.High DSCC cows had higher levels of red blood cell counts(P<0.05),hemoglobin(P=0.07),and hematocrit(P=0.05),higher concentrations of serum oxidative variables[reactive oxygen species(P<0.05),malondialdehyde(P<0.05),protein carbonyl(P<0.05),and 8-hydroxy-2-deoxyguanosine(P=0.07)],higher levels of serum and milk NETs(P<0.05)and blood-milk barrier indicators,including serumβ-casein(P=0.05)and milk immunoglobulin G2(P=0.09),than those of low DSCC cows.In addition,lower concentrations of serum nutrient metabolites(cholesterol and albumin)(P<0.05)and a lower level of serum deoxyribonuclease I(P=0.09)were observed in high DSCC cows than in low DSCC cows.Among the assessments performed using levels of the three prepartum serum parameters(NETs,deoxyribonuclease I andβ-casein),the area under the curve(0.973)of NETs was the highest.In addition,the sensitivity(1.00)and specificity(0.93)were observed for the discrimination of these cows using NETs levels with a critical value of 32.2 ng/mL(P<0.05).Conclusions:The formation of NETs in blood in transition dairy cows may damage the integrity of the blood-milk barrier and thereby increase the risk for mastitis in postpartum cows.
基金supported by National Natural Science Foundation of China for Youth Scholars(Grant No.82022033,82202241)Heilongjiang Postdoctoral Science Foundation(Grant No.LBH-Z21022),China Postdoctoral Science Foundation(Grant No.2022MD713749)Sichuan Provincial Science Foundation for Distinguished Young Scholars(24NSFJQ0038).
文摘Tumor-promoting niche after incomplete surgery resection(SR)can lead to more aggressive local progression and distant metastasis with augmented angiogenesis-immunosuppressive tumor microenvironment(TME).Herein,elevated neutrophil extracellular traps(NETs)and cancer-associated neurotransmitters(CANTs,e.g.,catecholamines)are firstly identified as two of the dominant inducements.Further,an injectable fibrin-alginate hydrogel with high tissue adhesion has been constructed to specifically co-deliver NETs inhibitor(DNase I)-encapsulated PLGA nanoparticles and an unselectiveβ-adrenergic receptor blocker(propranolol).The two components(i.e.,fibrin and alginate)can respond to two triggers(thrombin and Ca2+,respectively)in postoperative bleeding to gelate,shaping into an interpenetrating network(IPN)featuring high strength.The continuous release of DNase I and PR can wreck NETs and antagonize catecholamines to decrease microvessel density,blockade myeloid-derived suppressor cells,secrete various proinflammatory cytokines,potentiate natural killer cell function and hamper cytotoxic T cell exhaustion.The reprogrammed TME significantly suppress locally residual and distant tumors,induce strong immune memory effects and thus inhibit lung metastasis.Thus,targetedly degrading NETs and blocking CANTs enabled by this in-situ IPN-based hydrogel drug depot provides a simple and efficient approach against SR-induced cancer recurrence and metastasis.
文摘Ischemic stroke(IS)is the main killer that endangers the health and life of middle-aged and elderly people worldwide.Inflammatory response plays a key regulatory role in the pathogenesis of IS.After cerebral ischemia,leukocytes rapidly accumulate,penetrate blood vessels and infiltrate brain tissue,thereby activating pro-inflammatory factors in the infarct area to exacerbate nerve damage.Neutrophil extracellular traps(NETs)are fibrous mesh structures released by activated neutrophils outside the cell,which can clear pathogens and cell debris,induce inflammatory responses and exacerbate cerebral ischemia-reperfusion(CI/R)injury.Various traditional Chinese medicines and their main components can improve neurological function defects after IS,and inhibit the formation of NETs,which opens up a new direction for the study of traditional Chinese medicines in the prevention and treatment of IS.