Introduction: Collagen is the primary structural protein fibroblasts produce in the skin’s extracellular matrix. Infiltration of neutrophils into the epidermis and dermis by exposure to UV causes collagen damage and ...Introduction: Collagen is the primary structural protein fibroblasts produce in the skin’s extracellular matrix. Infiltration of neutrophils into the epidermis and dermis by exposure to UV causes collagen damage and contributes to photoaging. Methods: To study the combined effect of Lumenato and ceramide in preventing collagen-1 damage induced by phagocytes, we used co-cultures of normal human dermal fibroblasts (fibroblasts) and activated human neutrophils. The present study aimed to determine the protective effect of the combination of Lumenato and ceramide on fibroblast collagen-1 damage induced by neutrophils. Results: Lumenato (in the range of 6.5 - 208 μg/ml) or ceramide (in the range of 0.1 - 50 μM) inhibited the production of superoxides and MPO by TNFα-stimulated neutrophils, as well as the production of NO by LPS-stimulated macrophages in a dose-dependent manner. The combinations of Lumenato and ceramide, in low concentrations, caused synergistic prevention of fibroblasts’ collagen-1 damage induced by TNFα-activated neutrophils, detected by fluorescence immunostaining and WB analysis. MPO activity in the supernatants of the co-cultures was also synergistically inhibited. Adding Lumenato or ceramide singly or in combinations in these low concentrations to the fibroblast cultures did not affect the expression of collagen-1. The combinations of Lumenato or ceramide in these concentrations also caused a synergistic inhibition of NO production by activated macrophages. Conclusions: The results suggest that combining low concentrations of Lumenato and ceramide results in synergistic protection against fibroblasts’ collagen-1 damage induced by neutrophils, thus indicating their possible potential for enhanced skin health.展开更多
Objective:Neutrophils are one of the most predominant infiltrating leukocytes in lung cancer tissues and are associated with lung cancer progression.How neutrophils promote lung cancer progression,however,has not been...Objective:Neutrophils are one of the most predominant infiltrating leukocytes in lung cancer tissues and are associated with lung cancer progression.How neutrophils promote lung cancer progression,however,has not been established.Methods:Kaplan–Meier plotter online analysis and tissue immunohistochemistry were used to determine the relationship between neutrophils and overall survival in lung cancer patients.The effect of neutrophils on lung cancer was determined using the Transwell migration assay,a proliferation assay,and a murine tumor model.Gene knockdown was used to determine poly ADPribose polymerase(PARP)-1 function in lung cancer-educated neutrophils.Western blot analysis and gelatin zymography were used to demonstrate the correlation between PARP-1 and matrix metallopeptidase 9(MMP-9).Immunoprecipitation coupled to mass spectrometry(IP/MS)was used to identify the proteins interacting with PARP-1.Co-immunoprecipitation(Co-IP)was used to confirm that PARP-1 interacts with arachidonate 5-lipooxygenase(ALOX5).Neutrophil PARP-1 blockage by AG14361 rescued neutrophil-promoted lung cancer progression.Results:An increased number of infiltrating neutrophils was negatively associated with overall survival in lung cancer patients(P<0.001).Neutrophil activation promoted lung cancer cell invasion,migration,and proliferation in vitro,and murine lung cancer growth in vivo.Mechanistically,PARP-1 was shown to be involved in lung cancer cell-induced neutrophil activation to increase MMP-9 expression through interacting and stabilizing ALOX5 by post-translational protein modification(PARylation).Blocking PARP-1 by gene knockdown or AG14361 significantly decreased ALOX5 expression and MMP-9 production,and eliminated neutrophil-mediated lung cancer cell invasion and in vivo tumor growth.Conclusion:We identified a novel mechanism by which PARP-1 mediates lung cancer cell-induced neutrophil activation and PARylates ALOX5 to regulate MMP-9 expression,which exacerbates lung cancer progression.展开更多
Background:Neutrophils are traditionally viewed as first responders but have a short onset of action in response to traumatic brain injury(TBI).However,the heterogeneity,multifunctionality,and time-dependent modulatio...Background:Neutrophils are traditionally viewed as first responders but have a short onset of action in response to traumatic brain injury(TBI).However,the heterogeneity,multifunctionality,and time-dependent modulation of brain damage and outcome mediated by neutrophils after TBI remain poorly understood.Methods:Using the combined single-cell transcriptomics,metabolomics,and proteomics analysis from TBI patients and the TBI mouse model,we investigate a novel neutrophil phenotype and its associated effects on TBI outcome by neurological deficit scoring and behavioral tests.We also characterized the underlying mechanisms both invitro and invivo through molecular simulations,signaling detections,gene expression regulation assessments[including dual-luciferase reporter and chromatin immunoprecipitation(ChIP)assays],primary cultures or co-cultures of neutrophils and oligodendrocytes,intracellular iron,and lipid hydroperoxide concentration measurements,as well as forkhead box protein O1(FOXO1)conditional knockout mice.Results:We identified that high expression of the FOXO1 protein was induced in neutrophils after TBI both in TBI patients and the TBI mouse model.Infiltration of these FOXO1high neutrophils in the brain was detected not only in the acute phase but also in the chronic phase post-TBI,aggravating acute brain inflammatory damage and promoting late TBI-induced depression.In the acute stage,FOXO1 upregulated cytoplasmic Versican(VCAN)to interact with the apoptosis regulator B-cell lymphoma-2(BCL-2)-associated X protein(BAX),suppressing the mitochondrial translocation of BAX,which mediated the antiapoptotic effect companied with enhancing interleukin-6(IL-6)production of FOXO1high neutrophils.In the chronic stage,the“FOXO1-transferrin receptor(TFRC)”mechanism contributes to FOXO1high neutrophil ferroptosis,disturbing the iron homeostasis of oligodendrocytes and inducing a reduction in myelin basic protein,which contributes to the progression of late depression after TBI.Conclusions:FOXO1high neutrophils represent a novel neutrophil phenotype that emerges in response to acute and chronic TBI,which provides insight into the heterogeneity,reprogramming activity,and versatility of neutrophils in TBI.展开更多
Microglia-mediated neuroinflammation is considered a pathological feature of Parkinson's disease.Triggering receptor expressed on myeloid cell-1(TREM-1)can amplify the inherent immune response,and crucially,regula...Microglia-mediated neuroinflammation is considered a pathological feature of Parkinson's disease.Triggering receptor expressed on myeloid cell-1(TREM-1)can amplify the inherent immune response,and crucially,regulate inflammation.In this study,we found marked elevation of serum soluble TREM-1 in patients with Parkinson's disease that positively correlated with Parkinson's disease severity and dyskinesia.In a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease,we found that microglial TREM-1 expression also increased in the substantia nigra.Further,TREM-1 knockout alleviated dyskinesia in a mouse model of Parkinson's disease and reduced dopaminergic neuronal injury.Meanwhile,TREM-1 knockout attenuated the neuroinflammatory response,dopaminergic neuronal injury,and neutrophil migration.Next,we established an in vitro 1-methyl-4-phenyl-pyridine-induced BV2 microglia model of Parkinson's disease and treated the cells with the TREM-1 inhibitory peptide LP17.We found that LP17 treatment reduced apoptosis of dopaminergic neurons and neutrophil migration.Moreover,inhibition of neutrophil TREM-1 activation diminished dopaminergic neuronal apoptosis induced by lipopolysaccharide.TREM-1 can activate the downstream CARD9/NF-κB proinflammatory pathway via interaction with SYK.These findings suggest that TREM-1 may play a key role in mediating the damage to dopaminergic neurons in Parkinson's disease by regulating the interaction between microglia and peripheral neutrophils.展开更多
Objective:Liver cancer is a deadly malignancy associated with high mortality and morbidity.Less than 20%of patients with advanced liver cancer respond to a single anti-PD-1 treatment.The high heterogeneity of neutroph...Objective:Liver cancer is a deadly malignancy associated with high mortality and morbidity.Less than 20%of patients with advanced liver cancer respond to a single anti-PD-1 treatment.The high heterogeneity of neutrophils in the tumor immune microenvironment in liver cancer may contribute to resistance to immune checkpoint blockade(ICB).However,the underlying mechanism remains largely unknown.Methods:We established an orthotopic liver cancer model by using transposable elements to integrate the oncogenes Myc and KrasG12Dinto the genome in liver cells from conditional Trp53 null/null mice(pTMK/Trp53^(-/-)).Flow cytometry and immunohistochemistry were used to assess the changes in immune cells in the tumor microenvironment.An ex vivo coculture assay was performed to test the inhibitory effects of tumor-associated neutrophils(TANs)on CD8^(+)T cells.The roles of neutrophils,T cells,and NK cells were validated through antibody-mediated depletion.The efficacy of the combination of neutrophil depletion and ICB was evaluated.Results:Orthotropic pTMK/Trp53^(-/-)mouse liver tumors displayed a moderate response to anti-Ly6G treatment but not PD-1 blockade.Depletion of neutrophils increased the infiltration of CD8^(+)T cells and decreased the number of exhausted T cells in the tumor microenvironment.Furthermore,depletion of either CD8^(+)T or NK cells abrogated the antitumor efficacy of anti-Ly6G treatment.Moreover,the combination of anti-Ly6G with anti-PD-L1 enhanced the infiltration of cytotoxic CD8^(+)T cells and thereafter resulted in a significantly greater decrease in tumor burden.Conclusions:Our data suggest that TANs may contribute to the resistance of liver cancer to ICB,and combining TAN depletion with T cell immunotherapy synergistically increases antitumor efficacy.展开更多
Primary and metastatic lung cancers are malignant lung tumors each with of which has a different pathogenesis,although both threaten patient lives.Tumor development and progression involve communication between tumor ...Primary and metastatic lung cancers are malignant lung tumors each with of which has a different pathogenesis,although both threaten patient lives.Tumor development and progression involve communication between tumor cells and the host microenvironment.Neutrophils are the most abundant immune cells in the tumor microenvironment(TME);they participate in the generation of an inflammatory milieu and influence patient survival through their anti-and pro-tumor abilities.Neutrophils can be classified into various categories according to different criteria;frequent categories include N1 antitumor neutrophils and N2 immunosuppressive neutrophils.The antitumor effects of neutrophils are reported to be mediated through a combination of reactive oxygen species,tumor necrosis factor-related apoptosis-inducing ligand,and receptor for advanced glycation end-products–cathepsin G association,as well as the regulation of the activities of other immune cells.There have also been reports that neutrophils can function as tumor promoters that contribute to lung cancer progression and metastasis by influencing processes including carcinogenesis,angiogenesis,cancer cell proliferation,and invasion ability,as well as having similar roles in the lung metastasis of other cancers.The rapid development of nanotechnology has provided new strategies for cancer treatment targeting neutrophils.展开更多
文摘Introduction: Collagen is the primary structural protein fibroblasts produce in the skin’s extracellular matrix. Infiltration of neutrophils into the epidermis and dermis by exposure to UV causes collagen damage and contributes to photoaging. Methods: To study the combined effect of Lumenato and ceramide in preventing collagen-1 damage induced by phagocytes, we used co-cultures of normal human dermal fibroblasts (fibroblasts) and activated human neutrophils. The present study aimed to determine the protective effect of the combination of Lumenato and ceramide on fibroblast collagen-1 damage induced by neutrophils. Results: Lumenato (in the range of 6.5 - 208 μg/ml) or ceramide (in the range of 0.1 - 50 μM) inhibited the production of superoxides and MPO by TNFα-stimulated neutrophils, as well as the production of NO by LPS-stimulated macrophages in a dose-dependent manner. The combinations of Lumenato and ceramide, in low concentrations, caused synergistic prevention of fibroblasts’ collagen-1 damage induced by TNFα-activated neutrophils, detected by fluorescence immunostaining and WB analysis. MPO activity in the supernatants of the co-cultures was also synergistically inhibited. Adding Lumenato or ceramide singly or in combinations in these low concentrations to the fibroblast cultures did not affect the expression of collagen-1. The combinations of Lumenato or ceramide in these concentrations also caused a synergistic inhibition of NO production by activated macrophages. Conclusions: The results suggest that combining low concentrations of Lumenato and ceramide results in synergistic protection against fibroblasts’ collagen-1 damage induced by neutrophils, thus indicating their possible potential for enhanced skin health.
基金supported by grants from the National Key R&D Program of China(Grant No.2018YFA0900900)the National Natural Science Foundation of China(Grant Nos.82273334,82203172,81871869,and 81400055)+3 种基金the Jiangsu Province Social Development Key Projects(Grant Nos.BE2020641 and BE2020640)the Xuzhou Medical University Excellent Talent Research Start-up Fund(Grant No.RC20552157)the Jiangsu Province Capability Improvement Project through Science,Technology and Education(Grant No.CXZX202234)funded by the China Postdoctoral Science Foundation(Grant No.2023M732970)。
文摘Objective:Neutrophils are one of the most predominant infiltrating leukocytes in lung cancer tissues and are associated with lung cancer progression.How neutrophils promote lung cancer progression,however,has not been established.Methods:Kaplan–Meier plotter online analysis and tissue immunohistochemistry were used to determine the relationship between neutrophils and overall survival in lung cancer patients.The effect of neutrophils on lung cancer was determined using the Transwell migration assay,a proliferation assay,and a murine tumor model.Gene knockdown was used to determine poly ADPribose polymerase(PARP)-1 function in lung cancer-educated neutrophils.Western blot analysis and gelatin zymography were used to demonstrate the correlation between PARP-1 and matrix metallopeptidase 9(MMP-9).Immunoprecipitation coupled to mass spectrometry(IP/MS)was used to identify the proteins interacting with PARP-1.Co-immunoprecipitation(Co-IP)was used to confirm that PARP-1 interacts with arachidonate 5-lipooxygenase(ALOX5).Neutrophil PARP-1 blockage by AG14361 rescued neutrophil-promoted lung cancer progression.Results:An increased number of infiltrating neutrophils was negatively associated with overall survival in lung cancer patients(P<0.001).Neutrophil activation promoted lung cancer cell invasion,migration,and proliferation in vitro,and murine lung cancer growth in vivo.Mechanistically,PARP-1 was shown to be involved in lung cancer cell-induced neutrophil activation to increase MMP-9 expression through interacting and stabilizing ALOX5 by post-translational protein modification(PARylation).Blocking PARP-1 by gene knockdown or AG14361 significantly decreased ALOX5 expression and MMP-9 production,and eliminated neutrophil-mediated lung cancer cell invasion and in vivo tumor growth.Conclusion:We identified a novel mechanism by which PARP-1 mediates lung cancer cell-induced neutrophil activation and PARylates ALOX5 to regulate MMP-9 expression,which exacerbates lung cancer progression.
基金This work was supported by the National Natural Science Foundation of China(82071779 and 81901626)the Science Fund for Creative Research Groups of Chongqing Municipal Education Commission of China,the grants from the Talent Foundation of Army Medical University(to Shuang-Shuang Dai)+1 种基金the Scientific Research Grant(ALJ22J003)the Chongqing Natural Science Foundation of China(CSTB2022NSCQ-MSX0177).
文摘Background:Neutrophils are traditionally viewed as first responders but have a short onset of action in response to traumatic brain injury(TBI).However,the heterogeneity,multifunctionality,and time-dependent modulation of brain damage and outcome mediated by neutrophils after TBI remain poorly understood.Methods:Using the combined single-cell transcriptomics,metabolomics,and proteomics analysis from TBI patients and the TBI mouse model,we investigate a novel neutrophil phenotype and its associated effects on TBI outcome by neurological deficit scoring and behavioral tests.We also characterized the underlying mechanisms both invitro and invivo through molecular simulations,signaling detections,gene expression regulation assessments[including dual-luciferase reporter and chromatin immunoprecipitation(ChIP)assays],primary cultures or co-cultures of neutrophils and oligodendrocytes,intracellular iron,and lipid hydroperoxide concentration measurements,as well as forkhead box protein O1(FOXO1)conditional knockout mice.Results:We identified that high expression of the FOXO1 protein was induced in neutrophils after TBI both in TBI patients and the TBI mouse model.Infiltration of these FOXO1high neutrophils in the brain was detected not only in the acute phase but also in the chronic phase post-TBI,aggravating acute brain inflammatory damage and promoting late TBI-induced depression.In the acute stage,FOXO1 upregulated cytoplasmic Versican(VCAN)to interact with the apoptosis regulator B-cell lymphoma-2(BCL-2)-associated X protein(BAX),suppressing the mitochondrial translocation of BAX,which mediated the antiapoptotic effect companied with enhancing interleukin-6(IL-6)production of FOXO1high neutrophils.In the chronic stage,the“FOXO1-transferrin receptor(TFRC)”mechanism contributes to FOXO1high neutrophil ferroptosis,disturbing the iron homeostasis of oligodendrocytes and inducing a reduction in myelin basic protein,which contributes to the progression of late depression after TBI.Conclusions:FOXO1high neutrophils represent a novel neutrophil phenotype that emerges in response to acute and chronic TBI,which provides insight into the heterogeneity,reprogramming activity,and versatility of neutrophils in TBI.
基金supported by the National Natural Science Foundation of China,Nos.82271257(to YZ)and 82071228(to YZ)Qing Lan Project(to YZ)+1 种基金Open Competition Grant of Xuzhou Medical University(to YZ)Postgraduate Research&Practice Innovation Program of Jiangsu Province,No.KYCX21_2705(to TS)。
文摘Microglia-mediated neuroinflammation is considered a pathological feature of Parkinson's disease.Triggering receptor expressed on myeloid cell-1(TREM-1)can amplify the inherent immune response,and crucially,regulate inflammation.In this study,we found marked elevation of serum soluble TREM-1 in patients with Parkinson's disease that positively correlated with Parkinson's disease severity and dyskinesia.In a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease,we found that microglial TREM-1 expression also increased in the substantia nigra.Further,TREM-1 knockout alleviated dyskinesia in a mouse model of Parkinson's disease and reduced dopaminergic neuronal injury.Meanwhile,TREM-1 knockout attenuated the neuroinflammatory response,dopaminergic neuronal injury,and neutrophil migration.Next,we established an in vitro 1-methyl-4-phenyl-pyridine-induced BV2 microglia model of Parkinson's disease and treated the cells with the TREM-1 inhibitory peptide LP17.We found that LP17 treatment reduced apoptosis of dopaminergic neurons and neutrophil migration.Moreover,inhibition of neutrophil TREM-1 activation diminished dopaminergic neuronal apoptosis induced by lipopolysaccharide.TREM-1 can activate the downstream CARD9/NF-κB proinflammatory pathway via interaction with SYK.These findings suggest that TREM-1 may play a key role in mediating the damage to dopaminergic neurons in Parkinson's disease by regulating the interaction between microglia and peripheral neutrophils.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.81972735,82030079,and 81972656)Beijing Natural Science Foundation(Grant No.7212108)+2 种基金Michigan Medicine and PKU-HSC JI(Grant No.BMU2020JI005)Baidu Foundation(Grant No.2020BD015)Ying Shi Foundation。
文摘Objective:Liver cancer is a deadly malignancy associated with high mortality and morbidity.Less than 20%of patients with advanced liver cancer respond to a single anti-PD-1 treatment.The high heterogeneity of neutrophils in the tumor immune microenvironment in liver cancer may contribute to resistance to immune checkpoint blockade(ICB).However,the underlying mechanism remains largely unknown.Methods:We established an orthotopic liver cancer model by using transposable elements to integrate the oncogenes Myc and KrasG12Dinto the genome in liver cells from conditional Trp53 null/null mice(pTMK/Trp53^(-/-)).Flow cytometry and immunohistochemistry were used to assess the changes in immune cells in the tumor microenvironment.An ex vivo coculture assay was performed to test the inhibitory effects of tumor-associated neutrophils(TANs)on CD8^(+)T cells.The roles of neutrophils,T cells,and NK cells were validated through antibody-mediated depletion.The efficacy of the combination of neutrophil depletion and ICB was evaluated.Results:Orthotropic pTMK/Trp53^(-/-)mouse liver tumors displayed a moderate response to anti-Ly6G treatment but not PD-1 blockade.Depletion of neutrophils increased the infiltration of CD8^(+)T cells and decreased the number of exhausted T cells in the tumor microenvironment.Furthermore,depletion of either CD8^(+)T or NK cells abrogated the antitumor efficacy of anti-Ly6G treatment.Moreover,the combination of anti-Ly6G with anti-PD-L1 enhanced the infiltration of cytotoxic CD8^(+)T cells and thereafter resulted in a significantly greater decrease in tumor burden.Conclusions:Our data suggest that TANs may contribute to the resistance of liver cancer to ICB,and combining TAN depletion with T cell immunotherapy synergistically increases antitumor efficacy.
基金financially supported by the National Natural Science Foundation of China(31971318,21876205,22027810,and 32101091)China Postdoctoral Science Foundation(2021M690043)+2 种基金the Key-Area Research and Development Program of Guangdong Province(2020B0101020001)the Chinese Academy of Sciences(CAS)Key Research Program for Frontier Sciences(QYZDJSSW-SLH022)the CAS Interdisciplinary Innovation Team,and Big Data Program of PLA General Hospital(2017MBD-016)。
文摘Primary and metastatic lung cancers are malignant lung tumors each with of which has a different pathogenesis,although both threaten patient lives.Tumor development and progression involve communication between tumor cells and the host microenvironment.Neutrophils are the most abundant immune cells in the tumor microenvironment(TME);they participate in the generation of an inflammatory milieu and influence patient survival through their anti-and pro-tumor abilities.Neutrophils can be classified into various categories according to different criteria;frequent categories include N1 antitumor neutrophils and N2 immunosuppressive neutrophils.The antitumor effects of neutrophils are reported to be mediated through a combination of reactive oxygen species,tumor necrosis factor-related apoptosis-inducing ligand,and receptor for advanced glycation end-products–cathepsin G association,as well as the regulation of the activities of other immune cells.There have also been reports that neutrophils can function as tumor promoters that contribute to lung cancer progression and metastasis by influencing processes including carcinogenesis,angiogenesis,cancer cell proliferation,and invasion ability,as well as having similar roles in the lung metastasis of other cancers.The rapid development of nanotechnology has provided new strategies for cancer treatment targeting neutrophils.