This study demonstrates the influence of the Ag^(+)/PO_(4)^(3-)ratio in precursor solution on the crystal structural formation,morphology,physical properties,and photocatalytic performance of a Ag_(3)PO_(4)photocataly...This study demonstrates the influence of the Ag^(+)/PO_(4)^(3-)ratio in precursor solution on the crystal structural formation,morphology,physical properties,and photocatalytic performance of a Ag_(3)PO_(4)photocatalyst that is fabricated,using a facile precipitation method,from AgNO_(3)and Na2HPO_(4)·12H_(2)O.The material characterizations were carried out using x-ray diffraction(XRD),scanning electron microscopy(SEM),energy-dispersive x-ray spectroscopy(EDX),Brunauer–Emmett–Teller(BET)surface area,Fourier transform infrared(FTIR)absorption,Raman scattering,x-ray photoelectron spectroscopy(XPS),UV-vis absorption,and photoluminescence(PL).The results show that Ag_(3)PO_(4)crystallizes better when the excess PO_(4)^(3-)content increases,and the lattice parameters decrease slightly,while the crystal diameter and the particle size increase.This change is also observed in the Raman scattering and FTIR spectra with the increase in the vibration frequency of the[PO_(4)]group.The compression of the[PO_(4)]unit was also confirmed in the XPS spectra with the shift of P 2p peaks toward higher binding energy.The photocatalytic results showed that the samples synthesized from excess PO_(4)^(3-)solution exhibited higher photocatalytic performance compared to the sample with a Ag^(+)/PO_(4)^(3-)ratio of 3:1.A sample prepared from the precursor solution with a Ag^(+)/PO_(4)^(3-)ratio of 3:1.5 was optimal for RhB decomposition under both visible light and natural sunlight,completely decomposing 10 ppm RhB after 15 minutes of xenon lamp irradiation and after 60 minutes under solar light irradiation.This is attributed to the high crystallinity,small particle size and low electron–hole recombination rate of the sample.展开更多
The major enrichment type of shale oil in the Chang 7_(3) shale of Upper Triassic Yanchang Formation in the Ordos Basin is unknown.This paper analyzes the organic matter transformation ratio,hydrocarbon expulsion effi...The major enrichment type of shale oil in the Chang 7_(3) shale of Upper Triassic Yanchang Formation in the Ordos Basin is unknown.This paper analyzes the organic matter transformation ratio,hydrocarbon expulsion efficiency and roof/floor sealing conditions of the Chang 7_(3) shale,and evaluates the major enrichment type of shale oil in this interval.The average organic matter transformation ratio of the Chang 7_(3) shale is about 45%;in other words,more than 50%of the organic matters have not transformed to hydrocarbons,and the lower the maturity,the greater the proportion of untransformed organic matters.The cumulative hydrocarbon expulsion efficiency of the transformed hydrocarbon is 27.5% on average,and the total proportion of untransformed organic matters plus retained hydrocarbons is greater than 70%.The relative hydrocarbon expulsion efficiency of the Chang 7_(3) shale is 60%on average,that is,about 40% of hydrocarbons retain in the shale.The Chang 7_(3) shale corresponds to Chang 7_(1+2) and Chang 8 sandstones as the roof and floor,respectively,and is further overlaid by Chang 6 shale,where extensive low porosity and low permeability–tight oil reservoirs have formed in the parts with relatively good porosity and permeability.Moreover,the Chang 7_(3) shale is tested to be in a negative pressure system(the pressure coefficient of 0.80–0.85).Therefore,the roof/floor sealing conditions of the Chang 7_(3) shale are poor.The retained hydrocarbons appear mostly in absorbed status,with low mobility.It is concluded that the medium–high mature shale oil is not the major enrichment type of shale oil in the Chang 7_(3) shale,but there may be enrichment opportunity for shale oil with good mobility in the areas where the sealing conditions are good without faults and fractures and oil reservoirs are formed off Chang 7_(1+2),Chang 6 and Chang 8.Furthermore,low–medium mature shale oil is believed to have great potential and is the major enrichment type of shale oil in the Chang 7_(3) shale.It is recommended to prepare relevant in-situ conversion technologies by pilot test and figure out the resource availability and distribution.展开更多
In order to predict the damage behaviours of 3D-printed continuous carbon fibre(CCF)reinforced composites,when additional short carbon fibre(SCF)composite components are employed for continuous printing or special fun...In order to predict the damage behaviours of 3D-printed continuous carbon fibre(CCF)reinforced composites,when additional short carbon fibre(SCF)composite components are employed for continuous printing or special functionality,a novel path-dependent progressive failure(PDPF)numerical approach is developed.First,a progressive failure model using Hashin failure criteria with continuum damage mechanics to account for the damage initiation and evaluation of 3D-printed CCF reinforced polyamide(PA)composites is developed,based on actual fibre placement trajectories with physical measurements of 3D-printed CCF/PA constituents.Meanwhile,an elastic-plastic model is employed to predict the plastic damage behaviours of SCF/PA parts.Then,the accuracy of the PDPF model was validated so as to study 3D-printed CCF/PA composites with either negative Poisson's ratio or high stiffness.The results demonstrate that the proposed PDPF model can achieve higher prediction accuracies in mechanical properties of these 3D-printed CCF/PA composites.Mechanism analyses show that the stress distribution is generally aggregated in the CCF areas along the fibre placement paths,and the shear damage and matrix tensile/compressive damage are the key damage modes.This study provides a new approach with valuable information for characterising complex 3D-printed continuous fibre-matrix composites with variable mechanical properties and multiple constituents.展开更多
A 10 × 10 solar-blind ultraviolet(UV) imaging array with double-layer wire structure was prepared based on Ga_(2)O_(3) film grown by atomic layer deposition. These single detection units in the array exhibit exce...A 10 × 10 solar-blind ultraviolet(UV) imaging array with double-layer wire structure was prepared based on Ga_(2)O_(3) film grown by atomic layer deposition. These single detection units in the array exhibit excellent performance at 3 V: photo-todark current ratio(PDCR) of 5.5 × 10^(5), responsivity(R) of 4.28 A/W, external quantum efficiency(EQE) of 2.1 × 10^(3)%, detectivity(D*) of 1.5 × 10^(14) Jones, and fast response time. The photodetector array shows high uniformity under different light intensity and low operating bias. The array also has good temperature stability. Under 300 ℃, it still presents clear imaging and keeps high R of 34.4 and 6.45 A/W at 5 and 1 V, respectively. This work provides a new insight for the large-scale array of Ga_(2)O_(3) solarblind UV detectors.展开更多
A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are sti...A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are still unclear.Here,maize seedlings were grown hydroponically with three N supplied in three different forms (NO_(3)^(–)only,75/25 NO_(3)^(–)/NH_(4)^(+)and NH_(4)^(+)only).Compared with sole NO_(3)^(–)or NH_(4)^(+),the mixed N supply increased the total root length of maize but did not affect the number of axial roots.The main reason was the increased total lateral root length,while the average lateral root (LR) length in each axle was only slightly increased.In addition,the average LR density of 2nd whorl crown root under mixed N was also increased.Compared with sole nitrate,mixed N could improve the N metabolism of roots (such as the N influx rate,nitrate reductase (NR) and glutamine synthase (GS)enzyme activities and total amino content of the roots).Experiments with exogenously added NR and GS inhibitors suggested that the increase in the average LR length under mixed N was related to the process of N assimilation,and whether the NR mediated NO synthesis participates in this process needs further exploration.Meanwhile,an investigation of the changes in root-shoot ratio and carbon (C) concentration showed that C transportation from shoots to roots may not be the key factor in mediating lateral root elongation,and the changes in the sugar concentration in roots further proved this conclusion.Furthermore,the synthesis and transportation of auxin in axial roots may play a key role in lateral root elongation,in which the expression of ZmPIN1B and ZmPIN9 may be involved in this pathway.This study preliminarily clarified the changes in root morphology and explored the possible physiological mechanism under a mixed N supply in maize,which may provide some theoretical basis for the cultivation of crop varieties with high N efficiency.展开更多
基金Project supported by a scientific and technological project at the level of Ministry of Education and Training(Grant No.B2020-MDA-11).
文摘This study demonstrates the influence of the Ag^(+)/PO_(4)^(3-)ratio in precursor solution on the crystal structural formation,morphology,physical properties,and photocatalytic performance of a Ag_(3)PO_(4)photocatalyst that is fabricated,using a facile precipitation method,from AgNO_(3)and Na2HPO_(4)·12H_(2)O.The material characterizations were carried out using x-ray diffraction(XRD),scanning electron microscopy(SEM),energy-dispersive x-ray spectroscopy(EDX),Brunauer–Emmett–Teller(BET)surface area,Fourier transform infrared(FTIR)absorption,Raman scattering,x-ray photoelectron spectroscopy(XPS),UV-vis absorption,and photoluminescence(PL).The results show that Ag_(3)PO_(4)crystallizes better when the excess PO_(4)^(3-)content increases,and the lattice parameters decrease slightly,while the crystal diameter and the particle size increase.This change is also observed in the Raman scattering and FTIR spectra with the increase in the vibration frequency of the[PO_(4)]group.The compression of the[PO_(4)]unit was also confirmed in the XPS spectra with the shift of P 2p peaks toward higher binding energy.The photocatalytic results showed that the samples synthesized from excess PO_(4)^(3-)solution exhibited higher photocatalytic performance compared to the sample with a Ag^(+)/PO_(4)^(3-)ratio of 3:1.A sample prepared from the precursor solution with a Ag^(+)/PO_(4)^(3-)ratio of 3:1.5 was optimal for RhB decomposition under both visible light and natural sunlight,completely decomposing 10 ppm RhB after 15 minutes of xenon lamp irradiation and after 60 minutes under solar light irradiation.This is attributed to the high crystallinity,small particle size and low electron–hole recombination rate of the sample.
基金Supported by the National Natural Science Foundation of China(U22B6004).
文摘The major enrichment type of shale oil in the Chang 7_(3) shale of Upper Triassic Yanchang Formation in the Ordos Basin is unknown.This paper analyzes the organic matter transformation ratio,hydrocarbon expulsion efficiency and roof/floor sealing conditions of the Chang 7_(3) shale,and evaluates the major enrichment type of shale oil in this interval.The average organic matter transformation ratio of the Chang 7_(3) shale is about 45%;in other words,more than 50%of the organic matters have not transformed to hydrocarbons,and the lower the maturity,the greater the proportion of untransformed organic matters.The cumulative hydrocarbon expulsion efficiency of the transformed hydrocarbon is 27.5% on average,and the total proportion of untransformed organic matters plus retained hydrocarbons is greater than 70%.The relative hydrocarbon expulsion efficiency of the Chang 7_(3) shale is 60%on average,that is,about 40% of hydrocarbons retain in the shale.The Chang 7_(3) shale corresponds to Chang 7_(1+2) and Chang 8 sandstones as the roof and floor,respectively,and is further overlaid by Chang 6 shale,where extensive low porosity and low permeability–tight oil reservoirs have formed in the parts with relatively good porosity and permeability.Moreover,the Chang 7_(3) shale is tested to be in a negative pressure system(the pressure coefficient of 0.80–0.85).Therefore,the roof/floor sealing conditions of the Chang 7_(3) shale are poor.The retained hydrocarbons appear mostly in absorbed status,with low mobility.It is concluded that the medium–high mature shale oil is not the major enrichment type of shale oil in the Chang 7_(3) shale,but there may be enrichment opportunity for shale oil with good mobility in the areas where the sealing conditions are good without faults and fractures and oil reservoirs are formed off Chang 7_(1+2),Chang 6 and Chang 8.Furthermore,low–medium mature shale oil is believed to have great potential and is the major enrichment type of shale oil in the Chang 7_(3) shale.It is recommended to prepare relevant in-situ conversion technologies by pilot test and figure out the resource availability and distribution.
基金Supported by National Natural Science Foundation of China (Grant No.12302177)Guangdong Provincial Basic and Applied Basic Research Foundation of China (Grant No.2024A1515010203)+1 种基金Shenzhen Science and Technology Program of China (Grant No.JCYJ20230807093602005)Shenzhen Key Laboratory of Intelligent Manufacturing for Continuous Carbon Fibre Reinforced Composites of China (Grant No.ZDSYS20220527171404011)。
文摘In order to predict the damage behaviours of 3D-printed continuous carbon fibre(CCF)reinforced composites,when additional short carbon fibre(SCF)composite components are employed for continuous printing or special functionality,a novel path-dependent progressive failure(PDPF)numerical approach is developed.First,a progressive failure model using Hashin failure criteria with continuum damage mechanics to account for the damage initiation and evaluation of 3D-printed CCF reinforced polyamide(PA)composites is developed,based on actual fibre placement trajectories with physical measurements of 3D-printed CCF/PA constituents.Meanwhile,an elastic-plastic model is employed to predict the plastic damage behaviours of SCF/PA parts.Then,the accuracy of the PDPF model was validated so as to study 3D-printed CCF/PA composites with either negative Poisson's ratio or high stiffness.The results demonstrate that the proposed PDPF model can achieve higher prediction accuracies in mechanical properties of these 3D-printed CCF/PA composites.Mechanism analyses show that the stress distribution is generally aggregated in the CCF areas along the fibre placement paths,and the shear damage and matrix tensile/compressive damage are the key damage modes.This study provides a new approach with valuable information for characterising complex 3D-printed continuous fibre-matrix composites with variable mechanical properties and multiple constituents.
基金supported by Natural Science Basic Research Program of Shaanxi Province of China (No. 2023-JCYB-574)National Natural Science Foundation of China (Grant No. 62304178)。
文摘A 10 × 10 solar-blind ultraviolet(UV) imaging array with double-layer wire structure was prepared based on Ga_(2)O_(3) film grown by atomic layer deposition. These single detection units in the array exhibit excellent performance at 3 V: photo-todark current ratio(PDCR) of 5.5 × 10^(5), responsivity(R) of 4.28 A/W, external quantum efficiency(EQE) of 2.1 × 10^(3)%, detectivity(D*) of 1.5 × 10^(14) Jones, and fast response time. The photodetector array shows high uniformity under different light intensity and low operating bias. The array also has good temperature stability. Under 300 ℃, it still presents clear imaging and keeps high R of 34.4 and 6.45 A/W at 5 and 1 V, respectively. This work provides a new insight for the large-scale array of Ga_(2)O_(3) solarblind UV detectors.
基金supported by the National Natural Science Foundation of China(31421092)the Central Publicinterest Scientific Institution Basal Research Fund,China(1610232023023)。
文摘A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are still unclear.Here,maize seedlings were grown hydroponically with three N supplied in three different forms (NO_(3)^(–)only,75/25 NO_(3)^(–)/NH_(4)^(+)and NH_(4)^(+)only).Compared with sole NO_(3)^(–)or NH_(4)^(+),the mixed N supply increased the total root length of maize but did not affect the number of axial roots.The main reason was the increased total lateral root length,while the average lateral root (LR) length in each axle was only slightly increased.In addition,the average LR density of 2nd whorl crown root under mixed N was also increased.Compared with sole nitrate,mixed N could improve the N metabolism of roots (such as the N influx rate,nitrate reductase (NR) and glutamine synthase (GS)enzyme activities and total amino content of the roots).Experiments with exogenously added NR and GS inhibitors suggested that the increase in the average LR length under mixed N was related to the process of N assimilation,and whether the NR mediated NO synthesis participates in this process needs further exploration.Meanwhile,an investigation of the changes in root-shoot ratio and carbon (C) concentration showed that C transportation from shoots to roots may not be the key factor in mediating lateral root elongation,and the changes in the sugar concentration in roots further proved this conclusion.Furthermore,the synthesis and transportation of auxin in axial roots may play a key role in lateral root elongation,in which the expression of ZmPIN1B and ZmPIN9 may be involved in this pathway.This study preliminarily clarified the changes in root morphology and explored the possible physiological mechanism under a mixed N supply in maize,which may provide some theoretical basis for the cultivation of crop varieties with high N efficiency.