The new AUV driven by multi-vectored thrusters not only has unique kinematic characteristics during the actual cruise but also exists uncertain factors such as hydrodynamic coefficients perturbation and unknown interf...The new AUV driven by multi-vectored thrusters not only has unique kinematic characteristics during the actual cruise but also exists uncertain factors such as hydrodynamic coefficients perturbation and unknown interference of tail fluid, which bring difficult to the stability of the AUV's control system. In order to solve the nonlinear term and unmodeled dynamics existing in the new AUV's attitude control and the disturbances caused by the external marine environment, a second-order sliding mode controller with double-loop structure that considering the dynamic characteristics of the rudder actuators is designed, which improves the robustness of the system and avoids the control failure caused by the problem that the design theory of the sliding mode controller does not match with the actual application conditions. In order to avoid the loss of the sliding mode caused by the amplitude and rate constraints of the rudder actuator in the new AUV's attitude control, the dynamic boundary layer method is used to adjust the sliding boundary layer thickness so as to obtain the best anti-chattering effects. Then the impacts of system parameters, rudder actuator's constraints and boundary layer on the sliding mode controller are computed and analyzed to verify the effectiveness and robustness of the sliding mode controller based on dynamic boundary layer. The computational results show that the original divergent second-order sliding mode controller can still effectively implement the AUV's attitude control through dynamically adjusting the sliding boundary layer thickness. The dynamic boundary layer method ensures the stability of the system and does not exceed the amplitude constraint of the rudder actuator, which provides a theoretical guidance and technical support for the control system design of the new AUV in real complex sea conditions.展开更多
基金supported by National Hi-tech Research and Development Program of China (863 Program,Grant No.2006AA09Z235)Hunan Provincial Innovation Foundation for Postgraduate of China (Grant No. CX2009B003)
文摘The new AUV driven by multi-vectored thrusters not only has unique kinematic characteristics during the actual cruise but also exists uncertain factors such as hydrodynamic coefficients perturbation and unknown interference of tail fluid, which bring difficult to the stability of the AUV's control system. In order to solve the nonlinear term and unmodeled dynamics existing in the new AUV's attitude control and the disturbances caused by the external marine environment, a second-order sliding mode controller with double-loop structure that considering the dynamic characteristics of the rudder actuators is designed, which improves the robustness of the system and avoids the control failure caused by the problem that the design theory of the sliding mode controller does not match with the actual application conditions. In order to avoid the loss of the sliding mode caused by the amplitude and rate constraints of the rudder actuator in the new AUV's attitude control, the dynamic boundary layer method is used to adjust the sliding boundary layer thickness so as to obtain the best anti-chattering effects. Then the impacts of system parameters, rudder actuator's constraints and boundary layer on the sliding mode controller are computed and analyzed to verify the effectiveness and robustness of the sliding mode controller based on dynamic boundary layer. The computational results show that the original divergent second-order sliding mode controller can still effectively implement the AUV's attitude control through dynamically adjusting the sliding boundary layer thickness. The dynamic boundary layer method ensures the stability of the system and does not exceed the amplitude constraint of the rudder actuator, which provides a theoretical guidance and technical support for the control system design of the new AUV in real complex sea conditions.