Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters...Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.展开更多
The use of solar energy to drive the chemical and energy processes,and the chemical storage of solar energy are the key elements to move to a low-carbon economy,sustainable society and to foster energy transition.For ...The use of solar energy to drive the chemical and energy processes,and the chemical storage of solar energy are the key elements to move to a low-carbon economy,sustainable society and to foster energy transition.For this reason,there is a fast-growing scientific interest on this subject,which is part of the general effort for a solar-driven chemistry and energy,the chemistry of the future.To realize this展开更多
The current energy crisis has prompted the development of new energy sources and energy storage/conversion devices. Membranes, as the key component, not only provide enormous separation potential for energy purificati...The current energy crisis has prompted the development of new energy sources and energy storage/conversion devices. Membranes, as the key component, not only provide enormous separation potential for energy purification but also guarantee stable and high-efficiency operation for rechargeable batteries and fuel cells. Remarkably, two-dimensional(2D) material separation membranes have attracted intense attention on their excellent performance in energy field applications, owing to high mechanical/chemical stability, low mass transport resistance, strict sizeexclusion, and abundant modifiable functional groups. In this review, we concentrate on the recent progress of 2D membrane and introduce 2D membranes based on graphene oxide(GO), MXenes, 2D MOFs, 2D COFs, and 2D zeolite nanosheets, which are applied in membrane separation(H2 collection and biofuel purification) and battery separators(vanadium flow battery, Li–S battery, and fuel cell). The mass transport mechanism, selectivity mechanism, and modification methods of these 2D membranes are stated in brief, mainly focusing on interlayer dominant membranes(GO and MXenes) and pore dominant membranes(MOFs, COFs, and zeolite nanosheets). In conclusion, we highlight the challenges and outlooks of applying 2D membranes in energy fields.展开更多
There has been a significant scope toward the cutting-edge in-vestigations in hierarchical carbon nanostructured electrodes originating from cellulosic materials,such as cellulose nanofibers,available from natural cel...There has been a significant scope toward the cutting-edge in-vestigations in hierarchical carbon nanostructured electrodes originating from cellulosic materials,such as cellulose nanofibers,available from natural cellulose and bacterial cellulose.Elements of energy storage systems(ESSs)are typically established upon inorganic/metal mixtures,carbonaceous implications,and petroleum-derived hydrocarbon chem-icals.However,these conventional substances may need help fulfilling the ever-increasing needs of ESSs.Nanocellulose has grown significantly as an impressive 1D element due to its natural availability,eco-friend-liness,recyclability,structural identity,simple transformation,and dimensional durability.Here,in this review article,we have discussed the role and overview of cellulose-based hydrogels in ESSs.Additionally,the extraction sources and solvents used for dissolution have been dis-cussed in detail.Finally,the properties(such as self-healing,trans-parency,strength and swelling behavior),and applications(such as flexible batteries,fuel cells,solar cells,flexible supercapacitors and carbon-based derived from cellulose)in energy storage devices and conclusion with existing challenges have been updated with recent findings.展开更多
The research for three-dimension(3D)printing carbon and carbide energy storage devices has attracted widespread exploration interests.Being designable in structure and materials,graphene oxide(GO)and MXene accompanied...The research for three-dimension(3D)printing carbon and carbide energy storage devices has attracted widespread exploration interests.Being designable in structure and materials,graphene oxide(GO)and MXene accompanied with a direct ink writing exhibit a promising prospect for constructing high areal and volume energy density devices.This review not only summarizes the recent advances in 3D printing energy storage devices including printing methods,ink rheological properties,and different energy storage systems,but also discusses the printing methods related to energy storage.In addition,the binder or additive free of two-dimensional carbide materials is quite important for the present electrochemical energy storage devices,which also are presented.展开更多
As a clean and renewable energy source,solar energy is a competitive alternative to replace conventional fossil fuels.Nevertheless,its serious fluctuating nature usually leads to a poor alignment with the actual energ...As a clean and renewable energy source,solar energy is a competitive alternative to replace conventional fossil fuels.Nevertheless,its serious fluctuating nature usually leads to a poor alignment with the actual energy demand.To solve this problem,the direct solar-to-electrochemical energy conversion and storage have been regarded as a feasible strategy.In this context,the development of high-performance integrated devices based on solar energy conversion parts(i.e.,solar cells or photoelectrodes)and electrochemical energy storage units(i.e.,rechargeable batteries or supercapacitors[SCs])has become increasingly necessary and urgent,in which carbon and carbon-based functional materials play a fundamental role in determining their energy conversion/storage performances.Herein,we summarize the latest progress on these integrated devices for solar electricity energy conversion and storage,with special emphasis on the critical role of carbon-based functional materials.First,principles of integrated devices are introduced,especially roles of carbon-based materials in these hybrid energy devices.Then,two major types of important integrated devices,including photovoltaic and photoelectrochemicalrechargeable batteries or SCs,are discussed in detail.Finally,key challenges and opportunities in the future development are also discussed.By this review,we hope to pave an avenue toward the development of stable and efficient devices for solar energy conversion and storage.展开更多
New energy storage devices such as batteries and supercapacitors are widely used in various fields because of their irreplaceable excellent characteristics.Because there are relatively few monitoring parameters and li...New energy storage devices such as batteries and supercapacitors are widely used in various fields because of their irreplaceable excellent characteristics.Because there are relatively few monitoring parameters and limited under-standing of their operation,they present problems in accurately predicting their state and controlling operation,such as state of charge,state of health,and early failure indicators.Poor monitoring can seriously affect the performance of energy storage devices.Therefore,to maximize the efficiency of new energy storage devices without damaging the equipment,it is important to make full use of sensing systems to accurately monitor important parameters such as voltage,current,temperature,and strain.These are highly related to their states.Hence,this paper reviews the sensing methods and divides them into two categories:embedded and non-embedded sensors.A variety of measurement methods used to measure the above parameters of various new energy storage devices such as batteries and super-capacitors are systematically summarized.The methods with different innovative points are listed,their advantages and disadvantages are summarized,and the application of optical fiber sensors is emphasized.Finally,the challenges and prospects for these studies are described.The intent is to encourage researchers in relevant fields to study the early warning of safety accidents from the root causes.展开更多
Device level performance of aqueous halide supercapatteries fabricated with equal electrode mass of activated carbon or graphene nanoplatelets has been characterized.It was revealed that the surface oxygen groups in t...Device level performance of aqueous halide supercapatteries fabricated with equal electrode mass of activated carbon or graphene nanoplatelets has been characterized.It was revealed that the surface oxygen groups in the graphitic structures of the nanoplatelets contributed toward a more enhanced charge storage capacity in bromide containing redox electrolytes.Moreover,the rate performance of the devices could be linked to the effect of the pore size of the carbons on the dynamics of the inactive alkali metal counterion of the redox halide salt.Additionally,the charge storage performance of aqueous halide supercapatteries with graphene nanoplatelets as the electrode material may be attributed to the combined effect of the porous structure on the dynamics of the non-active cations and a possible interaction of the Br^(-)/(Br_(2)+Br^(-)_(3))redox triple with the surface oxygen groups within the graphitic layer of the nanoplatelets.Generally,it has been shown that the surface groups and microstructure of electrode materials must be critically correlated with the redox electrolytes in the ongoing efforts to commercialize these devices.展开更多
Energy security and CO2 reduction are one of the most important issues as well as food matter in the 21st century. Power storage and power generation will contribute to solution of these issues. Electrochemical storag...Energy security and CO2 reduction are one of the most important issues as well as food matter in the 21st century. Power storage and power generation will contribute to solution of these issues. Electrochemical storage of Li-ion batteries is widely applied in mobile applications, and the new application for automobile using has been actively developed and partially realized. And the Li-ion battery storage in smart grid systems is also expected. Automobile use and storage use have large market size same as the size of memory semiconductor. For these diverse applications, material research and development are key technologies. From power generation, Solid Oxide Fuel Cell and Dye Sensitized Solar Cell are much expected as new technology devices. The business model is important to realize these new devices considering the value compared with the existing methods.展开更多
文摘Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.
文摘The use of solar energy to drive the chemical and energy processes,and the chemical storage of solar energy are the key elements to move to a low-carbon economy,sustainable society and to foster energy transition.For this reason,there is a fast-growing scientific interest on this subject,which is part of the general effort for a solar-driven chemistry and energy,the chemistry of the future.To realize this
基金financially supported by the National Natural Science Foundation of China(Grant Nos.21908054 and 21908098)。
文摘The current energy crisis has prompted the development of new energy sources and energy storage/conversion devices. Membranes, as the key component, not only provide enormous separation potential for energy purification but also guarantee stable and high-efficiency operation for rechargeable batteries and fuel cells. Remarkably, two-dimensional(2D) material separation membranes have attracted intense attention on their excellent performance in energy field applications, owing to high mechanical/chemical stability, low mass transport resistance, strict sizeexclusion, and abundant modifiable functional groups. In this review, we concentrate on the recent progress of 2D membrane and introduce 2D membranes based on graphene oxide(GO), MXenes, 2D MOFs, 2D COFs, and 2D zeolite nanosheets, which are applied in membrane separation(H2 collection and biofuel purification) and battery separators(vanadium flow battery, Li–S battery, and fuel cell). The mass transport mechanism, selectivity mechanism, and modification methods of these 2D membranes are stated in brief, mainly focusing on interlayer dominant membranes(GO and MXenes) and pore dominant membranes(MOFs, COFs, and zeolite nanosheets). In conclusion, we highlight the challenges and outlooks of applying 2D membranes in energy fields.
基金support from the Department of Chemistry and Research&Development Cell of Maharishi Markandeshwar (Deemed to be University),Mullana,Ambala,Haryana,India.Further,SSS would like to acknowledge the financial support provided by the UKRI via Grants No EP/T024607/1.VKT would like to acknowledge the research support provided by the UKRI via Grant No.EP/T024607/1Royal Society via grant number IES\R2\222208.
文摘There has been a significant scope toward the cutting-edge in-vestigations in hierarchical carbon nanostructured electrodes originating from cellulosic materials,such as cellulose nanofibers,available from natural cellulose and bacterial cellulose.Elements of energy storage systems(ESSs)are typically established upon inorganic/metal mixtures,carbonaceous implications,and petroleum-derived hydrocarbon chem-icals.However,these conventional substances may need help fulfilling the ever-increasing needs of ESSs.Nanocellulose has grown significantly as an impressive 1D element due to its natural availability,eco-friend-liness,recyclability,structural identity,simple transformation,and dimensional durability.Here,in this review article,we have discussed the role and overview of cellulose-based hydrogels in ESSs.Additionally,the extraction sources and solvents used for dissolution have been dis-cussed in detail.Finally,the properties(such as self-healing,trans-parency,strength and swelling behavior),and applications(such as flexible batteries,fuel cells,solar cells,flexible supercapacitors and carbon-based derived from cellulose)in energy storage devices and conclusion with existing challenges have been updated with recent findings.
基金financially supported by the Natural Science Research Project in Universities of Anhui Province in China (No.K J2020A0727)the Key Discipline of Material Science and Engineering of Suzhou University (No.2017XJZDXK3)+2 种基金the Doctor of Suzhou University Scientific Research (No.2020BS014)the Graduate Research and Innovation Fund of Suzhou University (No.2021KYCX11)the platform of Suzhou University (No.2021XJPT16)。
文摘The research for three-dimension(3D)printing carbon and carbide energy storage devices has attracted widespread exploration interests.Being designable in structure and materials,graphene oxide(GO)and MXene accompanied with a direct ink writing exhibit a promising prospect for constructing high areal and volume energy density devices.This review not only summarizes the recent advances in 3D printing energy storage devices including printing methods,ink rheological properties,and different energy storage systems,but also discusses the printing methods related to energy storage.In addition,the binder or additive free of two-dimensional carbide materials is quite important for the present electrochemical energy storage devices,which also are presented.
基金This study was supported by the Natural Science Foundation of China(No.51072130,51502045,and 21905202)Innovative Research in the University of Tianjin(TD13‐5077)+2 种基金Developed and Applied Funding of Tianjin Normal University(135202XK1702)the Australian Research Council(ARC)through the Discovery Project(No.DP200100365)Discovery Early Career Researcher Award(DECRA,DE170100871)program.
文摘As a clean and renewable energy source,solar energy is a competitive alternative to replace conventional fossil fuels.Nevertheless,its serious fluctuating nature usually leads to a poor alignment with the actual energy demand.To solve this problem,the direct solar-to-electrochemical energy conversion and storage have been regarded as a feasible strategy.In this context,the development of high-performance integrated devices based on solar energy conversion parts(i.e.,solar cells or photoelectrodes)and electrochemical energy storage units(i.e.,rechargeable batteries or supercapacitors[SCs])has become increasingly necessary and urgent,in which carbon and carbon-based functional materials play a fundamental role in determining their energy conversion/storage performances.Herein,we summarize the latest progress on these integrated devices for solar electricity energy conversion and storage,with special emphasis on the critical role of carbon-based functional materials.First,principles of integrated devices are introduced,especially roles of carbon-based materials in these hybrid energy devices.Then,two major types of important integrated devices,including photovoltaic and photoelectrochemicalrechargeable batteries or SCs,are discussed in detail.Finally,key challenges and opportunities in the future development are also discussed.By this review,we hope to pave an avenue toward the development of stable and efficient devices for solar energy conversion and storage.
基金funded by the Youth Fund of Shandong Province Natural Science Foundation grant number ZR2020QE212Key Projects of Shandong Province Natural Science Foundation grant number ZR2020KF020+2 种基金the Guangdong Provincial Key Lab of Green Chemical Product Technology grant number GC 202111Zhejiang Province Natural Science Foundation grant number LY22E070007National Natural Science Foundation of China grant number 52007170.
文摘New energy storage devices such as batteries and supercapacitors are widely used in various fields because of their irreplaceable excellent characteristics.Because there are relatively few monitoring parameters and limited under-standing of their operation,they present problems in accurately predicting their state and controlling operation,such as state of charge,state of health,and early failure indicators.Poor monitoring can seriously affect the performance of energy storage devices.Therefore,to maximize the efficiency of new energy storage devices without damaging the equipment,it is important to make full use of sensing systems to accurately monitor important parameters such as voltage,current,temperature,and strain.These are highly related to their states.Hence,this paper reviews the sensing methods and divides them into two categories:embedded and non-embedded sensors.A variety of measurement methods used to measure the above parameters of various new energy storage devices such as batteries and super-capacitors are systematically summarized.The methods with different innovative points are listed,their advantages and disadvantages are summarized,and the application of optical fiber sensors is emphasized.Finally,the challenges and prospects for these studies are described.The intent is to encourage researchers in relevant fields to study the early warning of safety accidents from the root causes.
基金funding from the International Doctoral Innovation CentreNingbo Education Bureau+2 种基金Ningbo Science and Technology Bureauthe University of NottinghamNingbo Municipal Government(3315 Plan and 2014A35001-1)
文摘Device level performance of aqueous halide supercapatteries fabricated with equal electrode mass of activated carbon or graphene nanoplatelets has been characterized.It was revealed that the surface oxygen groups in the graphitic structures of the nanoplatelets contributed toward a more enhanced charge storage capacity in bromide containing redox electrolytes.Moreover,the rate performance of the devices could be linked to the effect of the pore size of the carbons on the dynamics of the inactive alkali metal counterion of the redox halide salt.Additionally,the charge storage performance of aqueous halide supercapatteries with graphene nanoplatelets as the electrode material may be attributed to the combined effect of the porous structure on the dynamics of the non-active cations and a possible interaction of the Br^(-)/(Br_(2)+Br^(-)_(3))redox triple with the surface oxygen groups within the graphitic layer of the nanoplatelets.Generally,it has been shown that the surface groups and microstructure of electrode materials must be critically correlated with the redox electrolytes in the ongoing efforts to commercialize these devices.
文摘Energy security and CO2 reduction are one of the most important issues as well as food matter in the 21st century. Power storage and power generation will contribute to solution of these issues. Electrochemical storage of Li-ion batteries is widely applied in mobile applications, and the new application for automobile using has been actively developed and partially realized. And the Li-ion battery storage in smart grid systems is also expected. Automobile use and storage use have large market size same as the size of memory semiconductor. For these diverse applications, material research and development are key technologies. From power generation, Solid Oxide Fuel Cell and Dye Sensitized Solar Cell are much expected as new technology devices. The business model is important to realize these new devices considering the value compared with the existing methods.