For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a mult...For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a multi-objective optimization scheduling strategy considering energy storage participation is proposed.Firstly,the new energy power system model is established,and the PP scenario generation and reduction frame based on the autoregressive moving average model and Kantorovich-distance is proposed.Then,based on the optimization goal of the system operation cost minimization and the PP output power consumption maximization,the multi-objective optimization scheduling model is established.Finally,the simulation results show that introducing energy storage into the system can effectively reduce the system operation cost and improve the utilization efficiency of PP.展开更多
CSTR(Continuous stirred tank reactor)is employed in process control and chemical industries to improve response characteristics and system efficiency.It has a highly nonlinear characteristic that includes complexities...CSTR(Continuous stirred tank reactor)is employed in process control and chemical industries to improve response characteristics and system efficiency.It has a highly nonlinear characteristic that includes complexities in its control and design.Dynamic performance is compassionate to change in system parameterswhich need more effort for planning a significant controller for CSTR.The reactor temperature changes in either direction from the defined reference value.It is important to note that the intensity of chemical actions inside the CSTR is dependent on the various levels of temperature,and deviation from reference values may cause degradation of biomass quality.Design and implementation of an appropriate adaptive controller for such a nonlinear system are essential.In this paper,a conventional Proportional Integral Derivative(PID)controller is designed.The conventional techniques to deal with constraints suffer severe limitations like it has fixed controller parameters.Hence,A novel method is applied for computing the PID controller parameters using a swarm algorithm that overcomes the conventional controller’s limitation.In the proposed technique,PID parameters are tuned by Particle Swarm Optimization(PSO).It is not easy to choose the suitable objective function to design a PID controller using PSO to get an optimal response.In this article,a multi-objective function is proposed for PSO based controller design of CSTR.展开更多
Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is pro...Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems.展开更多
This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, ener...This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, energy losses cost, and power congestion cost. A two-phase multi-objective PSO algorithm is employed to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of both the proposed multi-objective planning approach and the improved multi-objective PSO have been verified by the 18-node typical system.展开更多
In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired ...In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms.展开更多
In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In ord...In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In order to effectively handle the production scheduling problem for the manufacturing system,an improved multi-objective particle swarm optimization algorithm based on Brownian motion(MOPSO-BM)is proposed.Since the existing MOPSO algorithms are easily stuck in the local optimum,the global search ability of the proposed method is enhanced based on the random motion mechanism of the BM.To further strengthen the global search capacity,a strategy of fitting the inertia weight with the piecewise Gaussian cumulative distribution function(GCDF)is included,which helps to maintain an excellent convergence rate of the algorithm.Based on the commonly used indicators generational distance(GD)and hypervolume(HV),we compare the MOPSO-BM with several other latest algorithms on the benchmark functions,and it shows a better overall performance.Furthermore,for a real reconfigurable production line of smart home appliances,three algorithms,namely non-dominated sorting genetic algorithm-II(NSGA-II),decomposition-based MOPSO(dMOPSO)and MOPSO-BM,are applied to tackle the scheduling problem.It is demonstrated that MOPSO-BM outperforms the others in terms of convergence rate and quality of solutions.展开更多
Task scheduling in cloud computing environments is a multi-objective optimization problem, which is NP hard. It is also a challenging problem to find an appropriate trade-off among resource utilization, energy consump...Task scheduling in cloud computing environments is a multi-objective optimization problem, which is NP hard. It is also a challenging problem to find an appropriate trade-off among resource utilization, energy consumption and Quality of Service(QoS) requirements under the changing environment and diverse tasks. Considering both processing time and transmission time, a PSO-based Adaptive Multi-objective Task Scheduling(AMTS) Strategy is proposed in this paper. First, the task scheduling problem is formulated. Then, a task scheduling policy is advanced to get the optimal resource utilization, task completion time, average cost and average energy consumption. In order to maintain the particle diversity, the adaptive acceleration coefficient is adopted. Experimental results show that the improved PSO algorithm can obtain quasi-optimal solutions for the cloud task scheduling problem.展开更多
A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming probl...A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.展开更多
In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single...In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single objective function from the fuzzy multi-objective linear programming problems. At first, a numerical example of solving fuzzy multi-objective linear programming problem has been provided to validate the maximum risk reduction by the proposed method. The proposed method has been applied to assess the risk of damage due to natural calamities like flood, cyclone, sidor, and storms at the coastal areas in Bangladesh. The proposed method of solving the fuzzy multi-objective linear programming problems by the statistical method has been compared with the Chandra Sen’s method. The numerical results show that the proposed method maximizes the risk reduction capacity better than Chandra Sen’s method.展开更多
针对标准粒子群算法在求解路网问题时显现出易陷入局部极值的问题,根据高校地理数据,提出一种求解高校路网的逆序变异的新混合PSO算法。为平衡算法的全局和局部搜索能力及增强种群多样性,将一种自平衡策略作为变异条件,在产生新的群体...针对标准粒子群算法在求解路网问题时显现出易陷入局部极值的问题,根据高校地理数据,提出一种求解高校路网的逆序变异的新混合PSO算法。为平衡算法的全局和局部搜索能力及增强种群多样性,将一种自平衡策略作为变异条件,在产生新的群体中按照逆序变异率算子对粒子进行位置变异,从而使得粒子摆脱局部极值后继续进行迭代更新操作。以Visual Studio 2005中C++编程实现实验仿真,结果表明此算法不但能有效求解高校路网问题,而且新算法收敛精度高,有效克服了早熟收敛问题。展开更多
The application of new soft magnetic materials in permanent magnet motor can effectively reduce the loss of motor and improve the efficiency of motor. Taguchi method is a local multivariable and multi-objective optimi...The application of new soft magnetic materials in permanent magnet motor can effectively reduce the loss of motor and improve the efficiency of motor. Taguchi method is a local multivariable and multi-objective optimization method widely used in various engineering problems, which can effectively improve the efficiency of engineering optimization. In this paper, based on a 25 kW, 1700 r/min three-phase permanent magnet motor, the relevant motor model is established in the finite element simulation software, and the relevant simulation analysis is carried out. Combined with Taguchi method optimization, the local optimal structure scheme is obtained. Through optimization, the motor can maintain high efficiency, reduce the cogging torque of the motor by 53.45%, reduce the torque ripple by 36.79%, and increase the torque generated by the permanent magnet per unit mass by 21.42%. Through this optimization, the overall performance of the motor has been significantly improved. The research content of this paper verifies the feasibility of the application of Taguchi method in the optimization of new soft magnetic material motor, provides a new idea for the optimization design of new soft magnetic material motor, and also provides a certain reference for the local multi-objective optimization of the electromagnetic structure of other similar motors.展开更多
An airbag is an effective protective device for vehicle occupant safety, but may cause unexpected injury from the excessive energy of ignition when it is deployed, This paper focuses on the design of a new tubular dri...An airbag is an effective protective device for vehicle occupant safety, but may cause unexpected injury from the excessive energy of ignition when it is deployed, This paper focuses on the design of a new tubular driver airhag from the perspective of reducing the dosage of gas generant, Three different dummies were selected for computer simulation to investigate the stiffness and protection performance of the new airhag, Next, a multi-objective optimization of the 50th percentile dummy was conducted, The results show that the static volume of the new airhag is only about 113 of the volume of an ordinary one, and the injury value of each type of dummy can meet legal requirements while reducing the gas dosage by at least 30%, The combined injury index (Pcomb) decreases by 22% and the gas dosage is reduced by 32% after optimization, This study demonstrates that the new tubular driver airbag has great potential for protection in terms of reducing the gas dosage,展开更多
In order to solve the problem of interaction between multiple evaluation indexes of seed metering performance under multiple factors of centralized seed feeding device,a multi-objective optimization of structure based...In order to solve the problem of interaction between multiple evaluation indexes of seed metering performance under multiple factors of centralized seed feeding device,a multi-objective optimization of structure based on particle swarm optimization(PSO)algorithm was proposed in this paper.The wheat centralized seed feeding device was taken as the research object,and the experimental factors were cone angle of type hole,working speed and seed filling gap.The working process of wheat centralized seed feeding device was simulated by discrete element method(DEM).The average seed number of type hole,the variation coefficient of the average seed number of type hole,and the maximum tangential force between seed and seed feeding mechanism were selected as the evaluation indexes.Through the variance analysis of the evaluation indexes by the experimental factors,the optimization objective function was constructed.Using PSO algorithm,the multi-objective optimization was carried out for the wheat centralized seed feeding device.The optimization results show that the best structural combination parameters of the wheat centralized seed feeding device are the hole cone angle of 31.6°and the seed filling gap of 4.6 mm.The validity of the method was verified by simulation and field test.The results show that the PSO algorithm multi-objective optimization method proposed in this paper can provide a reference for the structural improvement and optimal design of the centralized seed feeding device.展开更多
To address uncertainty as well as transient stability constraints simultaneously in the preventive control of windfarm systems, a novel three-stage optimization strategy is established in this paper. In the first stag...To address uncertainty as well as transient stability constraints simultaneously in the preventive control of windfarm systems, a novel three-stage optimization strategy is established in this paper. In the first stage, the probabilisticmulti-objective particle swarm optimization based on the point estimate method is employed to cope with thestochastic factors. The transient security region of the system is accurately ensured by the interior point methodin the second stage. Finally, the verification of the final optimal objectives and satisfied constraints are enforcedin the last stage. Furthermore, the proposed strategy is a general framework that can combine other optimizationalgorithms. The proposed methodology is tested on the modified WSCC 9-bus system and the New England 39-bussystem. The results verify the feasibility of the method.展开更多
基金Science and Technology Project of State Grid Corporation of China(No.SGGSKY00FJJS1800140)。
文摘For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a multi-objective optimization scheduling strategy considering energy storage participation is proposed.Firstly,the new energy power system model is established,and the PP scenario generation and reduction frame based on the autoregressive moving average model and Kantorovich-distance is proposed.Then,based on the optimization goal of the system operation cost minimization and the PP output power consumption maximization,the multi-objective optimization scheduling model is established.Finally,the simulation results show that introducing energy storage into the system can effectively reduce the system operation cost and improve the utilization efficiency of PP.
基金University Malaysia Sabah fully funds this research under the grant number F08/PGRG/1908/2019,Ag.Asri Ag.Ibrahim received the grant,sponsors’websites:https://www.u ms.edu.my.Conflicts of Interest。
文摘CSTR(Continuous stirred tank reactor)is employed in process control and chemical industries to improve response characteristics and system efficiency.It has a highly nonlinear characteristic that includes complexities in its control and design.Dynamic performance is compassionate to change in system parameterswhich need more effort for planning a significant controller for CSTR.The reactor temperature changes in either direction from the defined reference value.It is important to note that the intensity of chemical actions inside the CSTR is dependent on the various levels of temperature,and deviation from reference values may cause degradation of biomass quality.Design and implementation of an appropriate adaptive controller for such a nonlinear system are essential.In this paper,a conventional Proportional Integral Derivative(PID)controller is designed.The conventional techniques to deal with constraints suffer severe limitations like it has fixed controller parameters.Hence,A novel method is applied for computing the PID controller parameters using a swarm algorithm that overcomes the conventional controller’s limitation.In the proposed technique,PID parameters are tuned by Particle Swarm Optimization(PSO).It is not easy to choose the suitable objective function to design a PID controller using PSO to get an optimal response.In this article,a multi-objective function is proposed for PSO based controller design of CSTR.
基金National Natural Science Foundations of China(Nos.61222303,21276078)National High-Tech Research and Development Program of China(No.2012AA040307)+1 种基金New Century Excellent Researcher Award Program from Ministry of Education of China(No.NCET10-0885)the Fundamental Research Funds for the Central Universities and Shanghai Leading Academic Discipline Project,China(No.B504)
文摘Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems.
基金financial supports and the strategic platform for innovation&research provided by Danish national project iPower.
文摘This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, energy losses cost, and power congestion cost. A two-phase multi-objective PSO algorithm is employed to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of both the proposed multi-objective planning approach and the improved multi-objective PSO have been verified by the 18-node typical system.
基金Project(61473078)supported by the National Natural Science Foundation of ChinaProject(2015-2019)supported by the Program for Changjiang Scholars from the Ministry of Education,China+1 种基金Project(16510711100)supported by International Collaborative Project of the Shanghai Committee of Science and Technology,ChinaProject(KJ2017A418)supported by Anhui University Science Research,China
文摘In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms.
基金supported by the National Natural Science Foundation of China(71871203,52005447,L1924063)Zhejiang Provincial Natural Science Foundation of China(LY18G010017,LQ21E050014).
文摘In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In order to effectively handle the production scheduling problem for the manufacturing system,an improved multi-objective particle swarm optimization algorithm based on Brownian motion(MOPSO-BM)is proposed.Since the existing MOPSO algorithms are easily stuck in the local optimum,the global search ability of the proposed method is enhanced based on the random motion mechanism of the BM.To further strengthen the global search capacity,a strategy of fitting the inertia weight with the piecewise Gaussian cumulative distribution function(GCDF)is included,which helps to maintain an excellent convergence rate of the algorithm.Based on the commonly used indicators generational distance(GD)and hypervolume(HV),we compare the MOPSO-BM with several other latest algorithms on the benchmark functions,and it shows a better overall performance.Furthermore,for a real reconfigurable production line of smart home appliances,three algorithms,namely non-dominated sorting genetic algorithm-II(NSGA-II),decomposition-based MOPSO(dMOPSO)and MOPSO-BM,are applied to tackle the scheduling problem.It is demonstrated that MOPSO-BM outperforms the others in terms of convergence rate and quality of solutions.
基金partially been sponsored by the National Science Foundation of China(No.61572355,61272093,610172063)Tianjin Research Program of Application Foundation and Advanced Technology under grant No.15JCYBJC15700
文摘Task scheduling in cloud computing environments is a multi-objective optimization problem, which is NP hard. It is also a challenging problem to find an appropriate trade-off among resource utilization, energy consumption and Quality of Service(QoS) requirements under the changing environment and diverse tasks. Considering both processing time and transmission time, a PSO-based Adaptive Multi-objective Task Scheduling(AMTS) Strategy is proposed in this paper. First, the task scheduling problem is formulated. Then, a task scheduling policy is advanced to get the optimal resource utilization, task completion time, average cost and average energy consumption. In order to maintain the particle diversity, the adaptive acceleration coefficient is adopted. Experimental results show that the improved PSO algorithm can obtain quasi-optimal solutions for the cloud task scheduling problem.
文摘A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.
文摘In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single objective function from the fuzzy multi-objective linear programming problems. At first, a numerical example of solving fuzzy multi-objective linear programming problem has been provided to validate the maximum risk reduction by the proposed method. The proposed method has been applied to assess the risk of damage due to natural calamities like flood, cyclone, sidor, and storms at the coastal areas in Bangladesh. The proposed method of solving the fuzzy multi-objective linear programming problems by the statistical method has been compared with the Chandra Sen’s method. The numerical results show that the proposed method maximizes the risk reduction capacity better than Chandra Sen’s method.
文摘针对标准粒子群算法在求解路网问题时显现出易陷入局部极值的问题,根据高校地理数据,提出一种求解高校路网的逆序变异的新混合PSO算法。为平衡算法的全局和局部搜索能力及增强种群多样性,将一种自平衡策略作为变异条件,在产生新的群体中按照逆序变异率算子对粒子进行位置变异,从而使得粒子摆脱局部极值后继续进行迭代更新操作。以Visual Studio 2005中C++编程实现实验仿真,结果表明此算法不但能有效求解高校路网问题,而且新算法收敛精度高,有效克服了早熟收敛问题。
文摘The application of new soft magnetic materials in permanent magnet motor can effectively reduce the loss of motor and improve the efficiency of motor. Taguchi method is a local multivariable and multi-objective optimization method widely used in various engineering problems, which can effectively improve the efficiency of engineering optimization. In this paper, based on a 25 kW, 1700 r/min three-phase permanent magnet motor, the relevant motor model is established in the finite element simulation software, and the relevant simulation analysis is carried out. Combined with Taguchi method optimization, the local optimal structure scheme is obtained. Through optimization, the motor can maintain high efficiency, reduce the cogging torque of the motor by 53.45%, reduce the torque ripple by 36.79%, and increase the torque generated by the permanent magnet per unit mass by 21.42%. Through this optimization, the overall performance of the motor has been significantly improved. The research content of this paper verifies the feasibility of the application of Taguchi method in the optimization of new soft magnetic material motor, provides a new idea for the optimization design of new soft magnetic material motor, and also provides a certain reference for the local multi-objective optimization of the electromagnetic structure of other similar motors.
文摘An airbag is an effective protective device for vehicle occupant safety, but may cause unexpected injury from the excessive energy of ignition when it is deployed, This paper focuses on the design of a new tubular driver airhag from the perspective of reducing the dosage of gas generant, Three different dummies were selected for computer simulation to investigate the stiffness and protection performance of the new airhag, Next, a multi-objective optimization of the 50th percentile dummy was conducted, The results show that the static volume of the new airhag is only about 113 of the volume of an ordinary one, and the injury value of each type of dummy can meet legal requirements while reducing the gas dosage by at least 30%, The combined injury index (Pcomb) decreases by 22% and the gas dosage is reduced by 32% after optimization, This study demonstrates that the new tubular driver airbag has great potential for protection in terms of reducing the gas dosage,
基金The authors acknowledge that this work was financially supported by Collaborative Innovation Project of Anhui Colleges and Universities(GXXT-2019-036)Nature Science Fund Project of Anhui province(2008085QE217)Natural Science Fund Project of Anhui Agricultural University(2019zd09).
文摘In order to solve the problem of interaction between multiple evaluation indexes of seed metering performance under multiple factors of centralized seed feeding device,a multi-objective optimization of structure based on particle swarm optimization(PSO)algorithm was proposed in this paper.The wheat centralized seed feeding device was taken as the research object,and the experimental factors were cone angle of type hole,working speed and seed filling gap.The working process of wheat centralized seed feeding device was simulated by discrete element method(DEM).The average seed number of type hole,the variation coefficient of the average seed number of type hole,and the maximum tangential force between seed and seed feeding mechanism were selected as the evaluation indexes.Through the variance analysis of the evaluation indexes by the experimental factors,the optimization objective function was constructed.Using PSO algorithm,the multi-objective optimization was carried out for the wheat centralized seed feeding device.The optimization results show that the best structural combination parameters of the wheat centralized seed feeding device are the hole cone angle of 31.6°and the seed filling gap of 4.6 mm.The validity of the method was verified by simulation and field test.The results show that the PSO algorithm multi-objective optimization method proposed in this paper can provide a reference for the structural improvement and optimal design of the centralized seed feeding device.
文摘To address uncertainty as well as transient stability constraints simultaneously in the preventive control of windfarm systems, a novel three-stage optimization strategy is established in this paper. In the first stage, the probabilisticmulti-objective particle swarm optimization based on the point estimate method is employed to cope with thestochastic factors. The transient security region of the system is accurately ensured by the interior point methodin the second stage. Finally, the verification of the final optimal objectives and satisfied constraints are enforcedin the last stage. Furthermore, the proposed strategy is a general framework that can combine other optimizationalgorithms. The proposed methodology is tested on the modified WSCC 9-bus system and the New England 39-bussystem. The results verify the feasibility of the method.