Satellite communications, pivotal for global connectivity, are increasingly converging with cutting-edge mobile networks, notably 5G, B5G, and 6G. This amalgamation heralds the promise of universal, high-velocity comm...Satellite communications, pivotal for global connectivity, are increasingly converging with cutting-edge mobile networks, notably 5G, B5G, and 6G. This amalgamation heralds the promise of universal, high-velocity communication, yet it is not without its challenges. Paramount concerns encompass spectrum allocation, the harmonization of network architectures, and inherent latency issues in satellite transmissions. Potential mitigations, such as dynamic spectrum sharing and the deployment of edge computing, are explored as viable solutions. Looking ahead, the advent of quantum communications within satellite frameworks and the integration of AI spotlight promising research trajectories. These advancements aim to foster a seamless and synergistic coexistence between satellite communications and next-gen mobile networks.展开更多
Since around 1980,a new generation of wireless technology has arisen approximately every 10 years.First-generation(1G)and secondgeneration(2G)began with voice and eventually introduced more and more data in third-gene...Since around 1980,a new generation of wireless technology has arisen approximately every 10 years.First-generation(1G)and secondgeneration(2G)began with voice and eventually introduced more and more data in third-generation(3G)and became highly popular in the fourthgeneration(4G).To increase the data rate along with low latency and mass connectivity the fifth-generation(5G)networks are being installed from 2020.However,the 5G technology will not be able to fulfill the data demand at the end of this decade.Therefore,it is expected that 6G communication networks will rise,providing better services through the implementation of new enabling technologies and allowing users to connect everywhere.6G technology would not be confined to cellular communications networks,but would also comply with non-terrestrial communication system requirements,such as satellite communication.The ultimate objectives of this work are to address the major challenges of the evolution of cellular communication networks and to discourse the recent growth of the industry based on the key scopes of application and challenges.The main areas of research topics are summarized into(i)major 6G wireless networkmilestones;(ii)key performance indicators;(iii)future new applications;and(iv)potential fields of research,challenges,and open issues.展开更多
In recent years,the need for a fast,efficient and a reliable wireless network has increased dramatically.Numerous 5G networks have already been tested while a few are in the early stages of deployment.In noncooperativ...In recent years,the need for a fast,efficient and a reliable wireless network has increased dramatically.Numerous 5G networks have already been tested while a few are in the early stages of deployment.In noncooperative communication scenarios,the recognition of digital signal modulations assists people in identifying the communication targets and ensures an effective management over them.The recent advancements in both Machine Learning(ML)and Deep Learning(DL)models demand the development of effective modulation recognition models with self-learning capability.In this background,the current research article designs aDeep Learning enabled Intelligent Modulation Recognition of Communication Signal(DLIMR-CS)technique for next-generation networks.The aim of the proposed DLIMR-CS technique is to classify different kinds of digitally-modulated signals.In addition,the fractal feature extraction process is appliedwith the help of the Sevcik Fractal Dimension(SFD)approach.Then,the extracted features are fed into the Deep Variational Autoencoder(DVAE)model for the classification of the modulated signals.In order to improve the classification performance of the DVAE model,the Tunicate Swarm Algorithm(TSA)is used to finetune the hyperparameters involved in DVAE model.A wide range of simulations was conducted to establish the enhanced performance of the proposed DLIMR-CS model.The experimental outcomes confirmed the superior recognition rate of the DLIMR-CS model over recent state-of-the-art methods under different evaluation parameters.展开更多
As the 5G communication networks are being widely deployed worldwide,both industry and academia have started to move beyond 5G and explore 6G communications.It is generally believed that 6G will be established on ubiq...As the 5G communication networks are being widely deployed worldwide,both industry and academia have started to move beyond 5G and explore 6G communications.It is generally believed that 6G will be established on ubiquitous Artificial Intelligence(AI)to achieve data-driven Machine Learning(ML)solutions in heterogeneous and massive-scale networks.However,traditional ML techniques require centralized data collection and processing by a central server,which is becoming a bottleneck of large-scale implementation in daily life due to significantly increasing privacy concerns.Federated learning,as an emerging distributed AI approach with privacy preservation nature,is particularly attractive for various wireless applications,especially being treated as one of the vital solutions to achieve ubiquitous AI in 6G.In this article,we first introduce the integration of 6G and federated learning and provide potential federated learning applications for 6G.We then describe key technical challenges,the corresponding federated learning methods,and open problems for future research on federated learning in the context of 6G communications.展开更多
Terahertz(THz)communications have been widely envisioned as a promising enabler to provide adequate bandwidth and achieve ultra-high data rates for sixth generation(6G)wireless networks.In order to mitigate blockage v...Terahertz(THz)communications have been widely envisioned as a promising enabler to provide adequate bandwidth and achieve ultra-high data rates for sixth generation(6G)wireless networks.In order to mitigate blockage vulnerability caused by serious propagation attenuation and poor diffraction of THz waves,an intelligent reflecting surface(IRS),which manipulates the propagation of incident electromagnetic waves in a programmable manner by adjusting the phase shifts of passive reflecting elements,is proposed to create smart radio environments,improve spectrum efficiency and enhance coverage capability.Firstly,some prospective application scenarios driven by the IRS empowered THz communications are introduced,including wireless mobile communications,secure communications,unmanned aerial vehicle(UAV)scenario,mobile edge computing(MEC)scenario and THz localization scenario.Then,we discuss the enabling technologies employed by the IRS empowered THz system,involving hardware design,channel estimation,capacity optimization,beam control,resource allocation and robustness design.Moreover,the arising challenges and open problems encountered in the future IRS empowered THz communications are also highlighted.Concretely,these emerging problems possibly originate from channel modeling,new material exploration,experimental IRS testbeds and intensive deployment.Ultimately,the combination of THz communications and IRS is capable of accelerating the development of 6G wireless networks.展开更多
With the development of wireless mobile communication technology,the demand for wireless communication rate and frequency increases year by year.Existing wireless mobile communication frequency tends to be saturated,w...With the development of wireless mobile communication technology,the demand for wireless communication rate and frequency increases year by year.Existing wireless mobile communication frequency tends to be saturated,which demands for new solutions.Terahertz(THz)communication has great potential for the future mobile communications(Beyond 5G),and is also an important technique for the high data rate transmission in spatial information network.THz communication has great application prospects in military-civilian integration and coordinated development.In China,important breakthroughs have been achieved for the key techniques of THz high data rate communications,which is practically keeping up with the most advanced technological level in the world.Therefore,further intensifying efforts on the development of THz communication have the strategic importance for China in leading the development of future wireless communication techniques and the standardization process of Beyond 5G.This paper analyzes the performance of the MIMO channel in the Terahertz(THz)band and a discrete mathematical method is used to propose a novel channel model.Then,a channel capacity model is proposed by the combination of path loss and molecular absorption in the THz band based on the CSI at the receiver.Simulation results show that the integration of MIMO in the THz band gives better data rate and channel capacity as compared with a single channel.展开更多
Unsourced multiple access(UMA)is a multi-access technology for massive,low-power,uncoordinated,and unsourced Machine Type Communication(MTC)networks.It ensures transmission reliability under the premise of high energy...Unsourced multiple access(UMA)is a multi-access technology for massive,low-power,uncoordinated,and unsourced Machine Type Communication(MTC)networks.It ensures transmission reliability under the premise of high energy efficiency.Based on the analysis of the 6G MTC key performance indicators(KPIs)and scenario characteristics,this paper summarizes its requirements for radio access networks.Following this,the existing multiple access models are analyzed under these standards to determine UMA's advantages for 6G MTC according to its design characteristics.The critical technology of UMA is the design of its multiple-access coding scheme.Therefore,the existing UMA coding schemes from different coding paradigms are further summarized and compared.In particular,this paper comprehensively considers the energy efficiency and computational complexity of these schemes,studies the changes of the above two indexes with the increase of access scale,and considers the trade-off between the two.It is revealed by the above analysis that some guiding rules of UMA coding design.Finally,the open problems and potentials in this field are given for future research.展开更多
Federated learning(FL)is a distributed machine learning approach that could provide secure 6G communications to preserve user privacy.In 6G communications,unmanned aerial vehicles(UAVs)are widely used as FL parameter ...Federated learning(FL)is a distributed machine learning approach that could provide secure 6G communications to preserve user privacy.In 6G communications,unmanned aerial vehicles(UAVs)are widely used as FL parameter servers to collect and broadcast related parameters due to the advantages of easy deployment and high flexibility.However,the challenge of limited energy restricts the populariza⁃tion of UAV-enabled FL applications.An airground integrated low-energy federated learning framework is proposed,which minimizes the overall energy consumption of application communication while maintaining the quality of the FL model.Specifically,a hierarchical FL framework is proposed,where base stations(BSs)aggregate model parameters updated from their surrounding users separately and send the aggregated model parameters to the server,thereby reducing the energy consumption of communication.In addition,we optimize the deploy⁃ment of UAVs through a deep Q-network approach to minimize their energy consumption for transmission as well as movement,thus improv⁃ing the energy efficiency of the airground integrated system.The evaluation results show that our proposed method can reduce the system en⁃ergy consumption while maintaining the accuracy of the FL model.展开更多
The evolution of next-generation cellular networks is aimed at creating faster,more reliable solutions.Both the next-generation 6G network and the metaverse require high transmission speeds.Visible light communication...The evolution of next-generation cellular networks is aimed at creating faster,more reliable solutions.Both the next-generation 6G network and the metaverse require high transmission speeds.Visible light communication(VLC)is deemed an important ancillary technology to wireless communication.It has shown potential for a wide range of applications in next-generation communication.Micro light-emitting diodes(μLEDs)are ideal light sources for high-speed VLC,owing to their high modulation bandwidths.In this review,an overview ofμLEDs for VLC is presented.Methods to improve the modulation bandwidth are discussed in terms of epitaxy optimization,crystal orientation,and active region structure.Moreover,electroluminescent white LEDs,photoluminescent white LEDs based on phosphor or quantum-dot color conversion,andμLED-based detectors for VLC are introduced.Finally,the latest high-speed VLC applications and the application prospects of VLC in 6G are introduced,including underwater VLC and artificial intelligence-based VLC systems.展开更多
As an important part of sixth generation(6G)integrated space-air-ground-sea networks,unmanned aerial vehicle(UAV)communications have aroused great attention and one of its typical application scenarios is the hilly en...As an important part of sixth generation(6G)integrated space-air-ground-sea networks,unmanned aerial vehicle(UAV)communications have aroused great attention and one of its typical application scenarios is the hilly environments.The related UAV air-ground(AG)channel characteristics analysis is crucial for system design and network evaluation of future UAV communications in hilly scenarios.In this paper,a recently conducted channel measurements campaign in a hilly scenario is presented,which is conducted at the center frequencies of 2.585 GHz and 3.5 GHz for different flight trajectories.Based on the measurement data,some key channel characteristics are analyzed,including path loss(PL),shadow fading(SF),Rician K-factor,root mean square(RMS)delay spread(DS),and temporal auto-correlation function(ACF).Finally,the comparison of typical channel characteristics under circular and straight trajectories is given.The related results can provide a theoretical reference for constructing future UAV communication system in hilly scenarios.展开更多
Unmanned Aerial Vehicles(UAVs)will be essential to support mission-critical applications of Ultra Reliable Low Latency Communication(URLLC)in futuristic Sixth-Generation(6G)networks.However,several security vulnerabil...Unmanned Aerial Vehicles(UAVs)will be essential to support mission-critical applications of Ultra Reliable Low Latency Communication(URLLC)in futuristic Sixth-Generation(6G)networks.However,several security vulnerabilities and attacks have plagued previous generations of communication systems;thus,physical layer security,especially against eavesdroppers,is vital,especially for upcoming 6G networks.In this regard,UAVs have appeared as a winning candidate to mitigate security risks.In this paper,we leverage UAVs to propose two methods.The first method utilizes a UAV as Decode-and-Forward(DF)relay,whereas the second method utilizes a UAV as a jammer to mitigate eavesdropping attacks for URLLC between transmitter and receiver devices.Moreover,we present a low-complexity algorithm that outlines the two aforementioned methods of mitigating interception,i.e.increasing secrecy rate,and we compare them with the benchmark null method in which there is a direct communication link between transmitter and receiver without the UAV DF relay.Additionally,simulation results show the effectiveness of such methods by improving the secrecy rate and its dependency on UAV height,blocklength,decoding error probability and transmitter-receiver separation distance.Lastly,we recommend the best method to enhance the secrecy rate in the presence of an eavesdropper based on our simulations.展开更多
Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wirel...Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wireless propagation environment and the broad coverage pose severe threats to the protection of private data. Emerging covert communications provides a promising solution to achieve robust communication security. Aiming at facilitating the practical implementation of covert communications in space/air networks, we present a tutorial overview of its potentials, scenarios, and key technologies. Specifically, first, the commonly used covertness constraint model, covert performance metrics, and potential application scenarios are briefly introduced. Then, several efficient methods that introduce uncertainty into the covert system are thoroughly summarized, followed by several critical enabling technologies, including joint resource allocation and deployment/trajectory design, multi-antenna and beamforming techniques, reconfigurable intelligent surface(RIS), and artificial intelligence algorithms. Finally, we highlight some open issues for future investigation.展开更多
In this paper,ambient IoT is used as a typical use case of massive connections for the sixth generation(6G)mobile communications where we derive the performance requirements to facilitate the evaluation of technical s...In this paper,ambient IoT is used as a typical use case of massive connections for the sixth generation(6G)mobile communications where we derive the performance requirements to facilitate the evaluation of technical solutions.A rather complete design of unsourced multiple access is proposed in which two key parts:a compressed sensing module for active user detection,and a sparse interleaver-division multiple access(SIDMA)module are simulated side by side on a same platform at balanced signal to noise ratio(SNR)operating points.With a proper combination of compressed sensing matrix,a convolutional encoder,receiver algorithms,the simulated performance results appear superior to the state-of-the-art benchmark,yet with relatively less complicated processing.展开更多
The mobility and connective capabilities of unmanned aerial vehicles(UAVs)are becoming more and more important in defense,commercial,and research domains.However,their open communication makes UAVs susceptible toundes...The mobility and connective capabilities of unmanned aerial vehicles(UAVs)are becoming more and more important in defense,commercial,and research domains.However,their open communication makes UAVs susceptible toundesirablepassive attacks suchas eavesdroppingor jamming.Recently,the inefficiencyof traditional cryptography-based techniques has led to the addition of Physical Layer Security(PLS).This study focuses on the advanced PLS method for passive eavesdropping in UAV-aided vehicular environments,proposing a solution to complement the conventional cryptography approach.Initially,we present a performance analysis of first-order secrecy metrics in 6G-enabled UAV systems,namely hybrid outage probability(HOP)and secrecy outage probability(SOP)over 2×2 Nakagami-m channels.Later,we propose a novel technique for mitigating passive eavesdropping,which considers first-order secrecy metrics as an optimization problem and determines their lower and upper bounds.Finally,we conduct an analysis of bounded HOP and SOP using the interactive Nakagami-m channel,considering the multiple-input-multiple-output configuration of the UAV system.The findings indicate that 2×2 Nakagami-mis a suitable fadingmodel under constant velocity for trustworthy receivers and eavesdroppers.The results indicate that UAV mobility has some influence on an eavesdropper’s intrusion during line-of-sight-enabled communication and can play an important role in improving security against passive eavesdroppers.展开更多
In this paper,we develop a 6G wireless powered Internet of Things(IoT)system assisted by unmanned aerial vehicles(UAVs)to intelligently supply energy and collect data at the same time.In our dual-UAV scheme,UAV-E,with...In this paper,we develop a 6G wireless powered Internet of Things(IoT)system assisted by unmanned aerial vehicles(UAVs)to intelligently supply energy and collect data at the same time.In our dual-UAV scheme,UAV-E,with a constant power supply,transmits energy to charge the IoT devices on the ground,whereas UAV-B serves the IoT devices by data collection as a base station.In this framework,the system's energy efficiency is maximized,which we define as a ratio of the sum rate of IoT devices to the energy consumption of two UAVs during a fixed working duration.With the constraints of duration,transmit power,energy,and mobility,a difficult non-convex issue is presented by optimizing the trajectory,time duration allocation,and uplink transmit power of concurrently.To tackle the non-convex fractional optimization issue,we deconstruct it into three subproblems and we solve each of them iteratively using the descent method in conjunction with sequential convex approximation(SCA)approaches and the Dinkelbach algorithm.The simulation findings indicate that the suggested cooperative design has the potential to greatly increase the energy efficiency of the 6G intelligent UAV-assisted wireless powered IoT system when compared to previous benchmark systems.展开更多
With a ten-year horizon from concept to reality, it is time now to start thinking about what will the sixth-generation(6G) mobile communications be on the eve of the fifth-generation(5G) deployment. To pave the way fo...With a ten-year horizon from concept to reality, it is time now to start thinking about what will the sixth-generation(6G) mobile communications be on the eve of the fifth-generation(5G) deployment. To pave the way for the development of 6G and beyond, we provide 6G visions in this paper. We first introduce the state-of-the-art technologies in 5G and indicate the necessity to study 6G. By taking the current and emerging development of wireless communications into consideration, we envision 6G to include three major aspects, namely, mobile ultra-broadband, super Internet-of-Things(IoT), and artificial intelligence(AI). Then, we review key technologies to realize each aspect. In particular, teraherz(THz) communications can be used to support mobile ultra-broadband, symbiotic radio and satellite-assisted communications can be used to achieve super IoT, and machine learning techniques are promising candidates for AI. For each technology, we provide the basic principle, key challenges, and state-of-the-art approaches and solutions.展开更多
Mobile communication standards have been developed into a new era of B5G and 6G.In recent years,low earth orbit(LEO)satellites and space Internet have become hot topics.The integrated satellite and terrestrial systems...Mobile communication standards have been developed into a new era of B5G and 6G.In recent years,low earth orbit(LEO)satellites and space Internet have become hot topics.The integrated satellite and terrestrial systems have been widely discussed by industries and academics,and even are expected to be applied in those huge constellations in construction.This paper points out the trends of two stages towards system integration of the terrestrial mobile communication and the satellite communications:to be compatible with 5G,and to be integrated within 6G.Based on analysis of the challenges of both stages,key technologies are thereafter analyzed in detail,covering both air interface currently discussed in 3GPP for B5G and also novel network architecture and related transmission technologies toward future 6G.展开更多
The sixth generation(6G)mobile networks will reshape the world by offering instant,efficient,and intelligent hyper-connectivity,as envisioned by the previously proposed Ubiquitous-X 6G networks.Such hyper-massive and ...The sixth generation(6G)mobile networks will reshape the world by offering instant,efficient,and intelligent hyper-connectivity,as envisioned by the previously proposed Ubiquitous-X 6G networks.Such hyper-massive and global connectivity will introduce tremendous challenges into the operation and management of 6G networks,calling for revolutionary theories and technological innovations.To this end,we propose a new route to boost network capabilities toward a wisdom-evolutionary and primitive-concise network(WePCN)vision for the Ubiquitous-X 6G network.In particular,we aim to concretize the evolution path toward the WePCN by first conceiving a new semantic representation framework,namely semantic base,and then establishing an intelligent and efficient semantic communication(IE-SC)network architecture.In the IE-SC architecture,a semantic intelligence plane is employed to interconnect the semantic-empowered physical-bearing layer,network protocol layer,and application-intent layer via semantic information flows.The proposed architecture integrates artificial intelligence and network technologies to enable intelligent interactions among various communication objects in 6G.It features a lower bandwidth requirement,less redundancy,and more accurate intent identification.We also present a brief review of recent advances in semantic communications and highlight potential use cases,complemented by a range of open challenges for 6G.展开更多
With the exponential growth of the data traffic in wireless communication systems, terahertz(THz) frequency band is envisioned as a promising candidate to support ultra-broadband for future beyond fifth generation(5G)...With the exponential growth of the data traffic in wireless communication systems, terahertz(THz) frequency band is envisioned as a promising candidate to support ultra-broadband for future beyond fifth generation(5G), bridging the gap between millimeter wave(mmWave) and optical frequency ranges. The purpose of this paper is to provide a comprehensive literature review on the development towards THz communications and presents some key technologies faced in THz wireless communication systems. Firstly, despite the substantial hardware problems that have to be developed in terms of the THz solid state superheterodyne receiver, high speed THz modulators and THz antennas, the practical THz channel model and the efficient THz beamforming are also described to compensate for the severe path attenuation. Moreover, two different kinds of lab-level THz communication systems are introduced minutely, named a solid state THz communication system and a spatial direct modulation THz communication system, respectively. The solid state THz system converts intermediate frequency(IF) modulated signal to THz frequency while the direct modulation THz system allows the high power THz sources to input for approving the relatively long distance communications. Finally, we discuss several potential application scenarios as well as some vital technical challenges that will be encountered in the future THz communications.展开更多
文摘Satellite communications, pivotal for global connectivity, are increasingly converging with cutting-edge mobile networks, notably 5G, B5G, and 6G. This amalgamation heralds the promise of universal, high-velocity communication, yet it is not without its challenges. Paramount concerns encompass spectrum allocation, the harmonization of network architectures, and inherent latency issues in satellite transmissions. Potential mitigations, such as dynamic spectrum sharing and the deployment of edge computing, are explored as viable solutions. Looking ahead, the advent of quantum communications within satellite frameworks and the integration of AI spotlight promising research trajectories. These advancements aim to foster a seamless and synergistic coexistence between satellite communications and next-gen mobile networks.
基金This research was supported by the National Research Foundation(NRF),Korea(2019R1C1C1007277)funded by the Ministry of Science and ICT(MSIT),Korea.
文摘Since around 1980,a new generation of wireless technology has arisen approximately every 10 years.First-generation(1G)and secondgeneration(2G)began with voice and eventually introduced more and more data in third-generation(3G)and became highly popular in the fourthgeneration(4G).To increase the data rate along with low latency and mass connectivity the fifth-generation(5G)networks are being installed from 2020.However,the 5G technology will not be able to fulfill the data demand at the end of this decade.Therefore,it is expected that 6G communication networks will rise,providing better services through the implementation of new enabling technologies and allowing users to connect everywhere.6G technology would not be confined to cellular communications networks,but would also comply with non-terrestrial communication system requirements,such as satellite communication.The ultimate objectives of this work are to address the major challenges of the evolution of cellular communication networks and to discourse the recent growth of the industry based on the key scopes of application and challenges.The main areas of research topics are summarized into(i)major 6G wireless networkmilestones;(ii)key performance indicators;(iii)future new applications;and(iv)potential fields of research,challenges,and open issues.
文摘In recent years,the need for a fast,efficient and a reliable wireless network has increased dramatically.Numerous 5G networks have already been tested while a few are in the early stages of deployment.In noncooperative communication scenarios,the recognition of digital signal modulations assists people in identifying the communication targets and ensures an effective management over them.The recent advancements in both Machine Learning(ML)and Deep Learning(DL)models demand the development of effective modulation recognition models with self-learning capability.In this background,the current research article designs aDeep Learning enabled Intelligent Modulation Recognition of Communication Signal(DLIMR-CS)technique for next-generation networks.The aim of the proposed DLIMR-CS technique is to classify different kinds of digitally-modulated signals.In addition,the fractal feature extraction process is appliedwith the help of the Sevcik Fractal Dimension(SFD)approach.Then,the extracted features are fed into the Deep Variational Autoencoder(DVAE)model for the classification of the modulated signals.In order to improve the classification performance of the DVAE model,the Tunicate Swarm Algorithm(TSA)is used to finetune the hyperparameters involved in DVAE model.A wide range of simulations was conducted to establish the enhanced performance of the proposed DLIMR-CS model.The experimental outcomes confirmed the superior recognition rate of the DLIMR-CS model over recent state-of-the-art methods under different evaluation parameters.
基金supported by the National Research Foundation(NRF),Singapore,under Singapore Energy Market Authority(EMA),Energy Resilience,NRF2017EWT-EP003-041,Singapore NRF2015NRF-ISF001-2277Singapore NRF National Satellite of Excellence,Design Science and Technology for Secure Critical Infrastructure NSoE DeST-SCI2019-0007+4 种基金A*STARNTU-SUTD Joint Research Grant on Artificial Intelligence for the Future of Manufacturing RGANS1906,Wallenberg AI,Autonomous Systems and Software Program and Nanyang Technological University(WASP/NTU)under grant M4082187(4080),and NTU-We Bank JRI(NWJ-2020-004)Alibaba Group through Alibaba Innovative Research(AIR)Program and Alibaba-NTU Singapore Joint Research Institute(JRI),NTU,SingaporeNational Key Research and Development Program of China under Grant 2018YFC0809803 and Grant 2019YFB2101901Young Innovation Talents Project in Higher Education of Guangdong Province,China under grant No.2018KQNCX333in part by the National Science Foundation of China under Grant 61702364。
文摘As the 5G communication networks are being widely deployed worldwide,both industry and academia have started to move beyond 5G and explore 6G communications.It is generally believed that 6G will be established on ubiquitous Artificial Intelligence(AI)to achieve data-driven Machine Learning(ML)solutions in heterogeneous and massive-scale networks.However,traditional ML techniques require centralized data collection and processing by a central server,which is becoming a bottleneck of large-scale implementation in daily life due to significantly increasing privacy concerns.Federated learning,as an emerging distributed AI approach with privacy preservation nature,is particularly attractive for various wireless applications,especially being treated as one of the vital solutions to achieve ubiquitous AI in 6G.In this article,we first introduce the integration of 6G and federated learning and provide potential federated learning applications for 6G.We then describe key technical challenges,the corresponding federated learning methods,and open problems for future research on federated learning in the context of 6G communications.
基金supported by the National Key Research and Development Project of China under Grant 2018YFB1801500supported in part by The National Natural Science Foundation of China under Grant 6162780166 and Grant 61831012.
文摘Terahertz(THz)communications have been widely envisioned as a promising enabler to provide adequate bandwidth and achieve ultra-high data rates for sixth generation(6G)wireless networks.In order to mitigate blockage vulnerability caused by serious propagation attenuation and poor diffraction of THz waves,an intelligent reflecting surface(IRS),which manipulates the propagation of incident electromagnetic waves in a programmable manner by adjusting the phase shifts of passive reflecting elements,is proposed to create smart radio environments,improve spectrum efficiency and enhance coverage capability.Firstly,some prospective application scenarios driven by the IRS empowered THz communications are introduced,including wireless mobile communications,secure communications,unmanned aerial vehicle(UAV)scenario,mobile edge computing(MEC)scenario and THz localization scenario.Then,we discuss the enabling technologies employed by the IRS empowered THz system,involving hardware design,channel estimation,capacity optimization,beam control,resource allocation and robustness design.Moreover,the arising challenges and open problems encountered in the future IRS empowered THz communications are also highlighted.Concretely,these emerging problems possibly originate from channel modeling,new material exploration,experimental IRS testbeds and intensive deployment.Ultimately,the combination of THz communications and IRS is capable of accelerating the development of 6G wireless networks.
基金Hallym University Research Fund,2019(HRF-201905-013).
文摘With the development of wireless mobile communication technology,the demand for wireless communication rate and frequency increases year by year.Existing wireless mobile communication frequency tends to be saturated,which demands for new solutions.Terahertz(THz)communication has great potential for the future mobile communications(Beyond 5G),and is also an important technique for the high data rate transmission in spatial information network.THz communication has great application prospects in military-civilian integration and coordinated development.In China,important breakthroughs have been achieved for the key techniques of THz high data rate communications,which is practically keeping up with the most advanced technological level in the world.Therefore,further intensifying efforts on the development of THz communication have the strategic importance for China in leading the development of future wireless communication techniques and the standardization process of Beyond 5G.This paper analyzes the performance of the MIMO channel in the Terahertz(THz)band and a discrete mathematical method is used to propose a novel channel model.Then,a channel capacity model is proposed by the combination of path loss and molecular absorption in the THz band based on the CSI at the receiver.Simulation results show that the integration of MIMO in the THz band gives better data rate and channel capacity as compared with a single channel.
基金supported by National Natural Science Foundation of China under Grant 61971062,Grant 92067202,Grant 62071058,Grant 62001049Beijing Natural Science Foundation under Grant 4222012Beijing University of Posts and Telecommunications China Mobile Research Institute Joint Innovation Center。
文摘Unsourced multiple access(UMA)is a multi-access technology for massive,low-power,uncoordinated,and unsourced Machine Type Communication(MTC)networks.It ensures transmission reliability under the premise of high energy efficiency.Based on the analysis of the 6G MTC key performance indicators(KPIs)and scenario characteristics,this paper summarizes its requirements for radio access networks.Following this,the existing multiple access models are analyzed under these standards to determine UMA's advantages for 6G MTC according to its design characteristics.The critical technology of UMA is the design of its multiple-access coding scheme.Therefore,the existing UMA coding schemes from different coding paradigms are further summarized and compared.In particular,this paper comprehensively considers the energy efficiency and computational complexity of these schemes,studies the changes of the above two indexes with the increase of access scale,and considers the trade-off between the two.It is revealed by the above analysis that some guiding rules of UMA coding design.Finally,the open problems and potentials in this field are given for future research.
基金supported in part by the National Key Research and Development Program of China under Grant No. 2021ZD0112400the NSFC under Grant No. 62202080+3 种基金the NSFC-Liaoning Province United Foundation under Grant No. U1908214the CCF-Tencent Open Fund under Grant No. IAGR20210116the Fundamental Research Funds for the Central Universities under Grant Nos. DUT21TD107 and DUT20RC(3)039the Liaoning Revitalization Talents Program under Grant No. XLYC2008017
文摘Federated learning(FL)is a distributed machine learning approach that could provide secure 6G communications to preserve user privacy.In 6G communications,unmanned aerial vehicles(UAVs)are widely used as FL parameter servers to collect and broadcast related parameters due to the advantages of easy deployment and high flexibility.However,the challenge of limited energy restricts the populariza⁃tion of UAV-enabled FL applications.An airground integrated low-energy federated learning framework is proposed,which minimizes the overall energy consumption of application communication while maintaining the quality of the FL model.Specifically,a hierarchical FL framework is proposed,where base stations(BSs)aggregate model parameters updated from their surrounding users separately and send the aggregated model parameters to the server,thereby reducing the energy consumption of communication.In addition,we optimize the deploy⁃ment of UAVs through a deep Q-network approach to minimize their energy consumption for transmission as well as movement,thus improv⁃ing the energy efficiency of the airground integrated system.The evaluation results show that our proposed method can reduce the system en⁃ergy consumption while maintaining the accuracy of the FL model.
基金the National Natural Science Foundation of China(62274138,11904302)Science and Technology Plan Project in Fujian Province of China(2021H0011)+2 种基金Fujian Province Central Guidance Local Science and Technology Development Fund Project in 2022(2022L3058)Major Science and Technology Project of Xiamen,China(3502Z20191015)Foshan Hi-tech Zone High-tech Industrialization Entrepreneurial Team Special Guidance Fund in 2022(222019000131).
文摘The evolution of next-generation cellular networks is aimed at creating faster,more reliable solutions.Both the next-generation 6G network and the metaverse require high transmission speeds.Visible light communication(VLC)is deemed an important ancillary technology to wireless communication.It has shown potential for a wide range of applications in next-generation communication.Micro light-emitting diodes(μLEDs)are ideal light sources for high-speed VLC,owing to their high modulation bandwidths.In this review,an overview ofμLEDs for VLC is presented.Methods to improve the modulation bandwidth are discussed in terms of epitaxy optimization,crystal orientation,and active region structure.Moreover,electroluminescent white LEDs,photoluminescent white LEDs based on phosphor or quantum-dot color conversion,andμLED-based detectors for VLC are introduced.Finally,the latest high-speed VLC applications and the application prospects of VLC in 6G are introduced,including underwater VLC and artificial intelligence-based VLC systems.
基金supported by the National Key R&D Program of China under Grant 2021YFB1407001the National Natural Science Foundation of China(NSFC)under Grants 62001269 and 61960206006+5 种基金the Fundamental Research Funds of Shandong University under Grant 2020GN032the Future Plan Program for Young Scholars of Shandong Universitythe State Key Laboratory of Rail Traffic Control and Safety(Contract No.RCS2022K009)Beijing Jiaotong University,the Taishan Scholar Program of Shandong Province,the Key Technologies R&D Program of Jiangsu(Prospective and Key Technologies for Industry)under Grants BE2022067,BE2022067-1,and BE2022067-3the High Level Innovation and Entrepreneurial Talent Introduction Program in Jiangsuthe EU H2020 RISE TESTBED2 project under Grant 872172.
文摘As an important part of sixth generation(6G)integrated space-air-ground-sea networks,unmanned aerial vehicle(UAV)communications have aroused great attention and one of its typical application scenarios is the hilly environments.The related UAV air-ground(AG)channel characteristics analysis is crucial for system design and network evaluation of future UAV communications in hilly scenarios.In this paper,a recently conducted channel measurements campaign in a hilly scenario is presented,which is conducted at the center frequencies of 2.585 GHz and 3.5 GHz for different flight trajectories.Based on the measurement data,some key channel characteristics are analyzed,including path loss(PL),shadow fading(SF),Rician K-factor,root mean square(RMS)delay spread(DS),and temporal auto-correlation function(ACF).Finally,the comparison of typical channel characteristics under circular and straight trajectories is given.The related results can provide a theoretical reference for constructing future UAV communication system in hilly scenarios.
文摘Unmanned Aerial Vehicles(UAVs)will be essential to support mission-critical applications of Ultra Reliable Low Latency Communication(URLLC)in futuristic Sixth-Generation(6G)networks.However,several security vulnerabilities and attacks have plagued previous generations of communication systems;thus,physical layer security,especially against eavesdroppers,is vital,especially for upcoming 6G networks.In this regard,UAVs have appeared as a winning candidate to mitigate security risks.In this paper,we leverage UAVs to propose two methods.The first method utilizes a UAV as Decode-and-Forward(DF)relay,whereas the second method utilizes a UAV as a jammer to mitigate eavesdropping attacks for URLLC between transmitter and receiver devices.Moreover,we present a low-complexity algorithm that outlines the two aforementioned methods of mitigating interception,i.e.increasing secrecy rate,and we compare them with the benchmark null method in which there is a direct communication link between transmitter and receiver without the UAV DF relay.Additionally,simulation results show the effectiveness of such methods by improving the secrecy rate and its dependency on UAV height,blocklength,decoding error probability and transmitter-receiver separation distance.Lastly,we recommend the best method to enhance the secrecy rate in the presence of an eavesdropper based on our simulations.
基金supported in part by the National Natural Science Foundation of China(NSFC)under grant numbers U22A2007 and 62171010the Beijing Natural Science Foundation under grant number L212003.
文摘Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wireless propagation environment and the broad coverage pose severe threats to the protection of private data. Emerging covert communications provides a promising solution to achieve robust communication security. Aiming at facilitating the practical implementation of covert communications in space/air networks, we present a tutorial overview of its potentials, scenarios, and key technologies. Specifically, first, the commonly used covertness constraint model, covert performance metrics, and potential application scenarios are briefly introduced. Then, several efficient methods that introduce uncertainty into the covert system are thoroughly summarized, followed by several critical enabling technologies, including joint resource allocation and deployment/trajectory design, multi-antenna and beamforming techniques, reconfigurable intelligent surface(RIS), and artificial intelligence algorithms. Finally, we highlight some open issues for future investigation.
文摘In this paper,ambient IoT is used as a typical use case of massive connections for the sixth generation(6G)mobile communications where we derive the performance requirements to facilitate the evaluation of technical solutions.A rather complete design of unsourced multiple access is proposed in which two key parts:a compressed sensing module for active user detection,and a sparse interleaver-division multiple access(SIDMA)module are simulated side by side on a same platform at balanced signal to noise ratio(SNR)operating points.With a proper combination of compressed sensing matrix,a convolutional encoder,receiver algorithms,the simulated performance results appear superior to the state-of-the-art benchmark,yet with relatively less complicated processing.
基金funded by Taif University,Taif,Saudi Arabia,Project No.(TUDSPP-2024-139).
文摘The mobility and connective capabilities of unmanned aerial vehicles(UAVs)are becoming more and more important in defense,commercial,and research domains.However,their open communication makes UAVs susceptible toundesirablepassive attacks suchas eavesdroppingor jamming.Recently,the inefficiencyof traditional cryptography-based techniques has led to the addition of Physical Layer Security(PLS).This study focuses on the advanced PLS method for passive eavesdropping in UAV-aided vehicular environments,proposing a solution to complement the conventional cryptography approach.Initially,we present a performance analysis of first-order secrecy metrics in 6G-enabled UAV systems,namely hybrid outage probability(HOP)and secrecy outage probability(SOP)over 2×2 Nakagami-m channels.Later,we propose a novel technique for mitigating passive eavesdropping,which considers first-order secrecy metrics as an optimization problem and determines their lower and upper bounds.Finally,we conduct an analysis of bounded HOP and SOP using the interactive Nakagami-m channel,considering the multiple-input-multiple-output configuration of the UAV system.The findings indicate that 2×2 Nakagami-mis a suitable fadingmodel under constant velocity for trustworthy receivers and eavesdroppers.The results indicate that UAV mobility has some influence on an eavesdropper’s intrusion during line-of-sight-enabled communication and can play an important role in improving security against passive eavesdroppers.
基金supported by the Natural Science Foundation of Beijing Municipality under Grant L192034。
文摘In this paper,we develop a 6G wireless powered Internet of Things(IoT)system assisted by unmanned aerial vehicles(UAVs)to intelligently supply energy and collect data at the same time.In our dual-UAV scheme,UAV-E,with a constant power supply,transmits energy to charge the IoT devices on the ground,whereas UAV-B serves the IoT devices by data collection as a base station.In this framework,the system's energy efficiency is maximized,which we define as a ratio of the sum rate of IoT devices to the energy consumption of two UAVs during a fixed working duration.With the constraints of duration,transmit power,energy,and mobility,a difficult non-convex issue is presented by optimizing the trajectory,time duration allocation,and uplink transmit power of concurrently.To tackle the non-convex fractional optimization issue,we deconstruct it into three subproblems and we solve each of them iteratively using the descent method in conjunction with sequential convex approximation(SCA)approaches and the Dinkelbach algorithm.The simulation findings indicate that the suggested cooperative design has the potential to greatly increase the energy efficiency of the 6G intelligent UAV-assisted wireless powered IoT system when compared to previous benchmark systems.
基金supported in part by National Natural Science Foundation of China under Grants 61631005, 61801101, U1801261, and 61571100
文摘With a ten-year horizon from concept to reality, it is time now to start thinking about what will the sixth-generation(6G) mobile communications be on the eve of the fifth-generation(5G) deployment. To pave the way for the development of 6G and beyond, we provide 6G visions in this paper. We first introduce the state-of-the-art technologies in 5G and indicate the necessity to study 6G. By taking the current and emerging development of wireless communications into consideration, we envision 6G to include three major aspects, namely, mobile ultra-broadband, super Internet-of-Things(IoT), and artificial intelligence(AI). Then, we review key technologies to realize each aspect. In particular, teraherz(THz) communications can be used to support mobile ultra-broadband, symbiotic radio and satellite-assisted communications can be used to achieve super IoT, and machine learning techniques are promising candidates for AI. For each technology, we provide the basic principle, key challenges, and state-of-the-art approaches and solutions.
基金This work was supported in part by the National Science Fund for Distinguished Young Scholars in China under grant 61425012the National Science Foundation Project in China under grant 61931005 and 61731017.
文摘Mobile communication standards have been developed into a new era of B5G and 6G.In recent years,low earth orbit(LEO)satellites and space Internet have become hot topics.The integrated satellite and terrestrial systems have been widely discussed by industries and academics,and even are expected to be applied in those huge constellations in construction.This paper points out the trends of two stages towards system integration of the terrestrial mobile communication and the satellite communications:to be compatible with 5G,and to be integrated within 6G.Based on analysis of the challenges of both stages,key technologies are thereafter analyzed in detail,covering both air interface currently discussed in 3GPP for B5G and also novel network architecture and related transmission technologies toward future 6G.
基金the National Key Research and Development Program of China(2019YFC1511302)in part by the National Natural Science Foundation of China(61871057)in part by the Fundamental Research Funds for the Central Universities(2019XD-A13).
文摘The sixth generation(6G)mobile networks will reshape the world by offering instant,efficient,and intelligent hyper-connectivity,as envisioned by the previously proposed Ubiquitous-X 6G networks.Such hyper-massive and global connectivity will introduce tremendous challenges into the operation and management of 6G networks,calling for revolutionary theories and technological innovations.To this end,we propose a new route to boost network capabilities toward a wisdom-evolutionary and primitive-concise network(WePCN)vision for the Ubiquitous-X 6G network.In particular,we aim to concretize the evolution path toward the WePCN by first conceiving a new semantic representation framework,namely semantic base,and then establishing an intelligent and efficient semantic communication(IE-SC)network architecture.In the IE-SC architecture,a semantic intelligence plane is employed to interconnect the semantic-empowered physical-bearing layer,network protocol layer,and application-intent layer via semantic information flows.The proposed architecture integrates artificial intelligence and network technologies to enable intelligent interactions among various communication objects in 6G.It features a lower bandwidth requirement,less redundancy,and more accurate intent identification.We also present a brief review of recent advances in semantic communications and highlight potential use cases,complemented by a range of open challenges for 6G.
基金supported by the National High Technology Research and Development Program of China (863 program) of China under Grant No.2011AA010200 supported by the National Natural Science Foundation of China (NSFC) under Grant No.61771116 and No.91738102
文摘With the exponential growth of the data traffic in wireless communication systems, terahertz(THz) frequency band is envisioned as a promising candidate to support ultra-broadband for future beyond fifth generation(5G), bridging the gap between millimeter wave(mmWave) and optical frequency ranges. The purpose of this paper is to provide a comprehensive literature review on the development towards THz communications and presents some key technologies faced in THz wireless communication systems. Firstly, despite the substantial hardware problems that have to be developed in terms of the THz solid state superheterodyne receiver, high speed THz modulators and THz antennas, the practical THz channel model and the efficient THz beamforming are also described to compensate for the severe path attenuation. Moreover, two different kinds of lab-level THz communication systems are introduced minutely, named a solid state THz communication system and a spatial direct modulation THz communication system, respectively. The solid state THz system converts intermediate frequency(IF) modulated signal to THz frequency while the direct modulation THz system allows the high power THz sources to input for approving the relatively long distance communications. Finally, we discuss several potential application scenarios as well as some vital technical challenges that will be encountered in the future THz communications.