Based on the Wireless Mesh Network (WMN), a wireless emergency communicationsystem for underground coal mine which was designed to be capable of videosurveillance, voice communication, and environment monitoring at th...Based on the Wireless Mesh Network (WMN), a wireless emergency communicationsystem for underground coal mine which was designed to be capable of videosurveillance, voice communication, and environment monitoring at the same time wasproposed.The network architecture of the system was proposed, and its service model,extensible technology, medium access control, routing algorithm, channel allocation andsystem management technologies were analyzed according to the actual rescue requirementsof underground coal mine and the characteristics of underground spatial structureand radio transmissions.The relevant theories and key technologies were extracted,which would provide theoretical support for the system development.展开更多
With the development of the transportation industry, the effective guidance of aircraft in an emergency to prevent catastrophic accidents remains one of the top safety concerns. Undoubtedly, operational status data of...With the development of the transportation industry, the effective guidance of aircraft in an emergency to prevent catastrophic accidents remains one of the top safety concerns. Undoubtedly, operational status data of the aircraft play an important role in the judgment and command of the Operational Control Center(OCC). However, how to transmit various operational status data from abnormal aircraft back to the OCC in an emergency is still an open problem. In this paper, we propose a novel Telemetry, Tracking,and Command(TT&C) architecture named Collaborative TT&C(CoTT&C) based on mega-constellation to solve such a problem. CoTT&C allows each satellite to help the abnormal aircraft by sharing TT&C resources when needed, realizing real-time and reliable aeronautical communication in an emergency. Specifically, we design a dynamic resource sharing mechanism for CoTT&C and model the mechanism as a single-leader-multi-follower Stackelberg game. Further, we give an unique Nash Equilibrium(NE) of the game as a closed form. Simulation results demonstrate that the proposed resource sharing mechanism is effective, incentive compatible, fair, and reciprocal. We hope that our findings can shed some light for future research on aeronautical communications in an emergency.展开更多
5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and ...5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and network function virtualization (NFV) with ClickOS, have been a significant part of 5G, and this paper mainly discusses them. D2D enables direct communication between devices without the relay of base station. In 5G, a two-tier cellular network composed of traditional cellular network system and D2D is an efficient method for realizing high-speed communication. MEC unloads work from end devices and clouds platforms to widespread nodes, and connects the nodes together with outside devices and third-party providers, in order to diminish the overloading effect on any device caused by enormous applications and improve users’ quality of experience (QoE). There is also a NFV method in order to fulfill the 5G requirements. In this part, an optimized virtual machine for middle-boxes named ClickOS is introduced, and it is evaluated in several aspects. Some middle boxes are being implemented in the ClickOS and proved to have outstanding performances.展开更多
Cognitive emergency communication net-works can meet the requirements of large capac-ity,high density and low delay in emergency com-munications.This paper analyzes the properties of emergency users in cognitive emerg...Cognitive emergency communication net-works can meet the requirements of large capac-ity,high density and low delay in emergency com-munications.This paper analyzes the properties of emergency users in cognitive emergency communi-cation networks,designs a multi-objective optimiza-tion and proposes a novel multi-objective bacterial foraging optimization algorithm based on effective area(MOBFO-EA)to maximize the transmission rate while maximizing the lifecycle of the network.In the algorithm,the effective area is proposed to prevent the algorithm from falling into a local optimum,and the diversity and uniformity of the Pareto-optimal solu-tions distributed in the effective area are used to eval-uate the optimization algorithm.Then,the dynamic preservation is used to enhance the competitiveness of excellent individuals and the uniformity and diversity of the Pareto-optimal solutions in the effective area.Finally,the adaptive step size,adaptive moving direc-tion and inertial weight are used to shorten the search time of bacteria and accelerate the optimization con-vergence.The simulation results show that the pro-posed MOBFO-EA algorithm improves the efficiency of the Pareto-optimal solutions by approximately 55%compared with the MOPSO algorithm and by approx-imately 60%compared with the MOBFO algorithm and has the fastest and smoothest convergence.展开更多
Complex networks on the Internet of Things(IoT)and brain communication are the main focus of this paper.The benefits of complex networks may be applicable in the future research directions of 6G,photonic,IoT,brain,etc...Complex networks on the Internet of Things(IoT)and brain communication are the main focus of this paper.The benefits of complex networks may be applicable in the future research directions of 6G,photonic,IoT,brain,etc.,communication technologies.Heavy data traffic,huge capacity,minimal level of dynamic latency,etc.are some of the future requirements in 5G+and 6G communication systems.In emerging communication,technologies such as 5G+/6G-based photonic sensor communication and complex networks play an important role in improving future requirements of IoT and brain communication.In this paper,the state of the complex system considered as a complex network(the connection between the brain cells,neurons,etc.)needs measurement for analyzing the functions of the neurons during brain communication.Here,we measure the state of the complex system through observability.Using 5G+/6G-based photonic sensor nodes,finding observability influenced by the concept of contraction provides the stability of neurons.When IoT or any sensors fail to measure the state of the connectivity in the 5G+or 6G communication due to external noise and attacks,some information about the sensor nodes during the communication will be lost.Similarly,neurons considered sing the complex networks concept neuron sensors in the brain lose communication and connections.Therefore,affected sensor nodes in a contraction are equivalent to compensate for maintaining stability conditions.In this compensation,loss of observability depends on the contraction size which is a key factor for employing a complex network.To analyze the observability recovery,we can use a contraction detection algorithm with complex network properties.Our survey paper shows that contraction size will allow us to improve the performance of brain communication,stability of neurons,etc.,through the clustering coefficient considered in the contraction detection algorithm.In addition,we discuss the scalability of IoT communication using 5G+/6G-based photonic technology.展开更多
Natural disaster or large-scale unexpected events easily make the terrestrial network overloaded,paralyzed, or totally destroyed. It is highly demanded to build an emergency network which can be deployed rapidly, offe...Natural disaster or large-scale unexpected events easily make the terrestrial network overloaded,paralyzed, or totally destroyed. It is highly demanded to build an emergency network which can be deployed rapidly, offer high data rate and wide coverage. The emergence of aerial platforms especially the low altitude platforms(LAPs) indicates a stable and reliable direction for the development of emergency network. Hybrid satellite-aerial-terrestrial(HSAT) networks have the ability to provide effective services rather than traditional infrastructures during the emergency situation. In this paper, the aerial platforms and the HSAT networks are surveyed and the key technologies are discussed from several aspects. The challenges of the HSAT networks are also outlined finally.展开更多
This paper applies the perspective of business ecosystem to mobile communications industry,trying to help mobile network operators improve their strategies in the era of the third generation mobile communications(3G)....This paper applies the perspective of business ecosystem to mobile communications industry,trying to help mobile network operators improve their strategies in the era of the third generation mobile communications(3G).According to the definition of the business ecosystem,the ecosystem structure of mobile network operators is analyzed.As an important hub in the ecosystem,mobile network operators are advised to take a keystone strategy.The key points of the strategy are summarized.Finally,suggestions for Chinese mobile network operators are given based on the analysis.展开更多
Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wirel...Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wireless propagation environment and the broad coverage pose severe threats to the protection of private data. Emerging covert communications provides a promising solution to achieve robust communication security. Aiming at facilitating the practical implementation of covert communications in space/air networks, we present a tutorial overview of its potentials, scenarios, and key technologies. Specifically, first, the commonly used covertness constraint model, covert performance metrics, and potential application scenarios are briefly introduced. Then, several efficient methods that introduce uncertainty into the covert system are thoroughly summarized, followed by several critical enabling technologies, including joint resource allocation and deployment/trajectory design, multi-antenna and beamforming techniques, reconfigurable intelligent surface(RIS), and artificial intelligence algorithms. Finally, we highlight some open issues for future investigation.展开更多
Terahertz(THz)communications have been widely envisioned as a promising enabler to provide adequate bandwidth and achieve ultra-high data rates for sixth generation(6G)wireless networks.In order to mitigate blockage v...Terahertz(THz)communications have been widely envisioned as a promising enabler to provide adequate bandwidth and achieve ultra-high data rates for sixth generation(6G)wireless networks.In order to mitigate blockage vulnerability caused by serious propagation attenuation and poor diffraction of THz waves,an intelligent reflecting surface(IRS),which manipulates the propagation of incident electromagnetic waves in a programmable manner by adjusting the phase shifts of passive reflecting elements,is proposed to create smart radio environments,improve spectrum efficiency and enhance coverage capability.Firstly,some prospective application scenarios driven by the IRS empowered THz communications are introduced,including wireless mobile communications,secure communications,unmanned aerial vehicle(UAV)scenario,mobile edge computing(MEC)scenario and THz localization scenario.Then,we discuss the enabling technologies employed by the IRS empowered THz system,involving hardware design,channel estimation,capacity optimization,beam control,resource allocation and robustness design.Moreover,the arising challenges and open problems encountered in the future IRS empowered THz communications are also highlighted.Concretely,these emerging problems possibly originate from channel modeling,new material exploration,experimental IRS testbeds and intensive deployment.Ultimately,the combination of THz communications and IRS is capable of accelerating the development of 6G wireless networks.展开更多
Spatio-temporal cellular network traffic prediction at wide-area level plays an important role in resource reconfiguration,traffic scheduling and intrusion detection,thus potentially supporting connected intelligence ...Spatio-temporal cellular network traffic prediction at wide-area level plays an important role in resource reconfiguration,traffic scheduling and intrusion detection,thus potentially supporting connected intelligence of the sixth generation of mobile communications technology(6G).However,the existing studies just focus on the spatio-temporal modeling of traffic data of single network service,such as short message,call,or Internet.It is not conducive to accurate prediction of traffic data,characterised by diverse network service,spatio-temporality and supersize volume.To address this issue,a novel multi-task deep learning framework is developed for citywide cellular network traffic prediction.Functionally,this framework mainly consists of a dual modular feature sharing layer and a multi-task learning layer(DMFS-MT).The former aims at mining long-term spatio-temporal dependencies and local spatio-temporal fluctuation trends in data,respectively,via a new combination of convolutional gated recurrent unit(ConvGRU)and 3-dimensional convolutional neural network(3D-CNN).For the latter,each task is performed for predicting service-specific traffic data based on a fully connected network.On the real-world Telecom Italia dataset,simulation results demonstrate the effectiveness of our proposal through prediction performance measure,spatial pattern comparison and statistical distribution verification.展开更多
The foundation of ad hoc networks lies in the guarantee of continuous connectivity.However,critical nodes,whose failure can easily destroy network connectivity,will influence the ad hoc network connectivity significan...The foundation of ad hoc networks lies in the guarantee of continuous connectivity.However,critical nodes,whose failure can easily destroy network connectivity,will influence the ad hoc network connectivity significantly.To protect the network efficiently,critical nodes should be identified accurately and rapidly.Unlike existing critical node identification methods for unknown topology that identify critical nodes according to historical information,this paper develops a critical node identification method to relax the prior topology information condition about critical nodes.Specifically,we first deduce a theorem about the minimum communication range for a node through the number of nodes and deployment ranges,and prove the universality of the theorem in a realistic two-dimensional scenario.After that,we analyze the relationship between communication range and degree value for each node and prove that the greater number of nodes within the communication range of a node,the greater degree value of nodes with high probability.Moreover,we develop a novel strategy to improve the accuracy of critical node identification without topology information.Finally,simulation results indicate the proposed strategy can achieve high accuracy and low redundancy while ensuring low time consumption in the scenarios with unknown topology information in ad hoc networks.展开更多
At present, the major drawback for mobile phones is the issue of power consumption. As one of the alternatives to decrease the power consumption of standard, power-hungry location-based services usually require the kn...At present, the major drawback for mobile phones is the issue of power consumption. As one of the alternatives to decrease the power consumption of standard, power-hungry location-based services usually require the knowledge of how individual phone features consume power. A typical phone feature is that the applications related to multimedia streaming utilize more power while receiving, processing, and displaying the multimedia contents, thus contributing to the increased power consumption. There is a growing concern that current battery modules have limited capability in fulfilling the long-term energy need for the progress on the mobile phone because of increasing power consumption during multimedia streaming processes. Considering this, in this paper, we provide an offline meaning sleep-mode method to compute the minimum power consumption comparing with the power-on solution to save power by implementing energy rate adaptation(RA) mechanism based on mobile excess energy level purpose to save battery power use. Our simulation results show that our RA method preserves efficient power while achieving better throughput compared with the mechanism without rate adaptation(WRA).展开更多
Public communication infrastructures are susceptible to disasters. Thus, the Emergency Communication Networks(ECNs) of small groups are necessary to maintain real-time communication during disasters. Given that ECNs a...Public communication infrastructures are susceptible to disasters. Thus, the Emergency Communication Networks(ECNs) of small groups are necessary to maintain real-time communication during disasters. Given that ECNs are self-built by users, the unavailability of infrastructures and the openness of wireless channels render them insecure. ECN security, however, is a rarely studied issue despite of its importance. Here, we propose a security scheme for the ECNs of small groups. Our scheme is based on the optimized Byzantine Generals’ Problem combined with the analysis of trusted security problems in ECNs. Applying the Byzantine Generals’ Problem to ECNs is a novel approach to realize two new functions, debugging and error correction, for ensuring system consistency and accuracy. Given the limitation of terminal devices, the lightweight fast ECDSA algorithm is introduced to guarantee the integrity and security of communication and the efficiency of the network. We implement a simulation to verify the feasibility of the algorithm after theoretical optimization.展开更多
The forthcoming Next Generation Network (NGN) is an all IP network. Multimedia communications over IP networks are a type of bundled session communications, which cannot directly traverse Network Address Translations ...The forthcoming Next Generation Network (NGN) is an all IP network. Multimedia communications over IP networks are a type of bundled session communications, which cannot directly traverse Network Address Translations (NATs) and firewalls even in NGN. To solve the problem that the existing traversal methods are not suitable for service providers to set up a real system in NGN, a Distributed Broker-agent Architecture (DBA) is addressed. DBA is secure and realizable for service providers and enterprises because it is easy to set up and does not need to upgrade the existing devices like Firewalls, NATs or endpoint devices of subscribers. DBA is composed of two-layer distributed agents, the server proxies and the client agents, in which all multimedia communications use shared tunnels to carry signaling messages and media data between broker-agents, and the call signaling is encrypted over Security Socket Layer (SSL) to guarantee the security of calling. Moreover, the function model and multiplexed connection messages format of DBA are designed, which lays a basis for the protocol in the future NGN. In addition, a simple implementation based on H.323 verifyies the main function of traversing firewalls and NATs.展开更多
Nowadays,daily human life is closely intertwined with various networks.When natural disasters or malicious attacks break out,the failure of communication infrastructure due to direct destruction or indirect impact ten...Nowadays,daily human life is closely intertwined with various networks.When natural disasters or malicious attacks break out,the failure of communication infrastructure due to direct destruction or indirect impact tends to cause a massive outage of communications.Emergency communication networks play a significant role in rescue operations.Recently,a flexible and efficient solution has been provided for emergency communications using unmanned aerial vehicles(UAVs).By means of their excellent characteristics,UAVs,serving as aerial base stations(ABSs),can be rapidly deployed to temporarily rebuild a damaged communication network to restore the users’connectivity.In this study,we investigate the use of UAVs as ABSs for an emergency communication scene where user equipment is unevenly distributed and the communication infrastructure has completely failed due to a severe disaster.Effective communication probability(ECP),which integrates throughput coverage and connectivity,is used to evaluate the performance of a communication network.Through simulations,we analyze communication improvements that can be obtained by the flexible deployment of ABSs.The results show a noticeable increase in ECP when some ABSs are deployed in optimal locations.展开更多
It has been an exciting journey since the mobile communications and artificial intelligence(AI)were conceived in 1983 and 1956.While both fields evolved independently and profoundly changed communications and computin...It has been an exciting journey since the mobile communications and artificial intelligence(AI)were conceived in 1983 and 1956.While both fields evolved independently and profoundly changed communications and computing industries,the rapid convergence of 5th generation mobile communication technology(5G)and AI is beginning to significantly transform the core communication infrastructure,network management,and vertical applications.The paper first outlined the individual roadmaps of mobile communications and AI in the early stage,with a concentration to review the era from 3rd generation mobile communication technology(3G)to 5G when AI and mobile communications started to converge.With regard to telecommunications AI,the progress of AI in the ecosystem of mobile communications was further introduced in detail,including network infrastructure,network operation and management,business operation and management,intelligent applications towards business supporting system(BSS)&operation supporting system(OSS)convergence,verticals and private networks,etc.Then the classifications of AI in telecommunication ecosystems were summarized along with its evolution paths specified by various international telecommunications standardization organizations.Towards the next decade,the prospective roadmap of telecommunications AI was forecasted.In line with 3rd generation partnership project(3GPP)and International Telecommunication Union Radiocommunication Sector(ITU-R)timeline of 5G&6th generation mobile communication technology(6G),the network intelligence following 3GPP and open radio access network(O-RAN)routes,experience and intent-based network management and operation,network AI signaling system,intelligent middle-office based BSS,intelligent customer experience management and policy control driven by BSS&OSS convergence,evolution from service level agreement(SLA)to experience level agreement(ELA),and intelligent private network for verticals were further explored.The paper is concluded with the vision that AI will reshape the future beyond 5G(B5G)/6G landscape,and we need pivot our research and development(R&D),standardizations,and ecosystem to fully take the unprecedented opportunities.展开更多
BACKGROUND:Rapid on-site triage is critical after mass-casualty incidents(MCIs)and other mass injury events.Unmanned aerial vehicles(UAVs)have been used in MCIs to search and rescue wounded individuals,but they mainly...BACKGROUND:Rapid on-site triage is critical after mass-casualty incidents(MCIs)and other mass injury events.Unmanned aerial vehicles(UAVs)have been used in MCIs to search and rescue wounded individuals,but they mainly depend on the UAV operator’s experience.We used UAVs and artificial intelligence(AI)to provide a new technique for the triage of MCIs and more efficient solutions for emergency rescue.METHODS:This was a preliminary experimental study.We developed an intelligent triage system based on two AI algorithms,namely OpenPose and YOLO.Volunteers were recruited to simulate the MCI scene and triage,combined with UAV and Fifth Generation(5G)Mobile Communication Technology real-time transmission technique,to achieve triage in the simulated MCI scene.RESULTS:Seven postures were designed and recognized to achieve brief but meaningful triage in MCIs.Eight volunteers participated in the MCI simulation scenario.The results of simulation scenarios showed that the proposed method was feasible in tasks of triage for MCIs.CONCLUSION:The proposed technique may provide an alternative technique for the triage of MCIs and is an innovative method in emergency rescue.展开更多
New energy power generation equipment has the characteristics of diurnal, perturbative, seasonal, and periodic power generation, which makes new power optical communication network(POCN) more dynamic and changeable. T...New energy power generation equipment has the characteristics of diurnal, perturbative, seasonal, and periodic power generation, which makes new power optical communication network(POCN) more dynamic and changeable. This is directly reflected in the dynamics of the link risk and service importance of the POCN. In this paper, aiming at the problem of the dynamic importance of service in POCN, and the resulting power optical communication network reliability decline problem, a new energy POCN dynamic routing intelligence algorithm based on service importance prediction is proposed. Based on the short-term power generation of new energy power station, the importance of each service and the risk degree of each link are predicted. Link weights are dynamically adjusted, and k-shortest path(KSP) algorithm is used to calculate route results. When network resources are insufficient, low-importance services can give way to prevent a large number of high-importance services from being blocked. Simulation results show that compared with the traditional KSP algorithm, the prediction-based dynamic routing intelligent(P-DRI) algorithm can reduce the service blocking probability by 55.59%, and reduce the average importance of blocking services by 44.77% at the cost of about 6.17% of the calculation delay.展开更多
Robotic-assisted percutaneous coronary intervention(R-PCI)is an innovative way of performing percutaneous coronary intervention(PCI)whereby the operator can manipulate coronary intraluminal guidewires and catheter dev...Robotic-assisted percutaneous coronary intervention(R-PCI)is an innovative way of performing percutaneous coronary intervention(PCI)whereby the operator can manipulate coronary intraluminal guidewires and catheter devices by using remotely controlled technology.Performing tele-R-PCI from a remote location via fifth generation network communication technology has never been reported in China;however,if this were possible,the technique could be used to treat many patients with coronary artery disease who would otherwise not have the opportunity of treatment.The case of a 73-year-old male patient with coronary artery disease who underwent successful tele-R-PCI at 800 km from the operators is presented.Performing long-distance teleR-PCI in patients with coronary artery disease is feasible with predictably successful outcomes when reliable network connectivity and local cardiac catheterization facilities are present.展开更多
Unmanned Aerial Vehicles(UAVs) have received a wide range of attention for military and commercial applications. Enhanced with communication capability, UAVs are considered to play important roles in the Sixth Generat...Unmanned Aerial Vehicles(UAVs) have received a wide range of attention for military and commercial applications. Enhanced with communication capability, UAVs are considered to play important roles in the Sixth Generation(6G) networks due to their low cost and flexible deployment. 6G is supposed to be an all-coverage network to provide ubiquitous connections for space, air, ground and underwater. UAVs are able to provide air-borne wireless coverage flexibly,serving as aerial base stations for ground users, as relays to connect isolated nodes, or as mobile users in cellular networks. However, the onboard energy of small UAVs is extremely limited. Thus,UAVs can be only deployed to establish wireless links temporarily. Prolonging the lifetime and developing green UAV communication with low power consumption becomes a critical challenge.In this article, a comprehensive survey on green UAV communications for 6G is carried out. Specifically, the typical UAVs and their energy consumption models are introduced. Then, the typical trends of green UAV communications are provided. In addition, the typical applications of UAVs and their green designs are discussed. Finally, several promising techniques and open research issues are also pointed out.展开更多
基金Supported by the National Natural Science Foundation of China(50534060)the National High Technology Project of China(2007AA06Z106)
文摘Based on the Wireless Mesh Network (WMN), a wireless emergency communicationsystem for underground coal mine which was designed to be capable of videosurveillance, voice communication, and environment monitoring at the same time wasproposed.The network architecture of the system was proposed, and its service model,extensible technology, medium access control, routing algorithm, channel allocation andsystem management technologies were analyzed according to the actual rescue requirementsof underground coal mine and the characteristics of underground spatial structureand radio transmissions.The relevant theories and key technologies were extracted,which would provide theoretical support for the system development.
基金supported by the National Natural Science Foundation of China under Grant 62131012/61971261。
文摘With the development of the transportation industry, the effective guidance of aircraft in an emergency to prevent catastrophic accidents remains one of the top safety concerns. Undoubtedly, operational status data of the aircraft play an important role in the judgment and command of the Operational Control Center(OCC). However, how to transmit various operational status data from abnormal aircraft back to the OCC in an emergency is still an open problem. In this paper, we propose a novel Telemetry, Tracking,and Command(TT&C) architecture named Collaborative TT&C(CoTT&C) based on mega-constellation to solve such a problem. CoTT&C allows each satellite to help the abnormal aircraft by sharing TT&C resources when needed, realizing real-time and reliable aeronautical communication in an emergency. Specifically, we design a dynamic resource sharing mechanism for CoTT&C and model the mechanism as a single-leader-multi-follower Stackelberg game. Further, we give an unique Nash Equilibrium(NE) of the game as a closed form. Simulation results demonstrate that the proposed resource sharing mechanism is effective, incentive compatible, fair, and reciprocal. We hope that our findings can shed some light for future research on aeronautical communications in an emergency.
文摘5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and network function virtualization (NFV) with ClickOS, have been a significant part of 5G, and this paper mainly discusses them. D2D enables direct communication between devices without the relay of base station. In 5G, a two-tier cellular network composed of traditional cellular network system and D2D is an efficient method for realizing high-speed communication. MEC unloads work from end devices and clouds platforms to widespread nodes, and connects the nodes together with outside devices and third-party providers, in order to diminish the overloading effect on any device caused by enormous applications and improve users’ quality of experience (QoE). There is also a NFV method in order to fulfill the 5G requirements. In this part, an optimized virtual machine for middle-boxes named ClickOS is introduced, and it is evaluated in several aspects. Some middle boxes are being implemented in the ClickOS and proved to have outstanding performances.
基金National Natural Sci-ence Foundation of China(Grant Nos.61871241 and 61771263)Science and Technology Program of Nantong(Grant No.JC2019117).
文摘Cognitive emergency communication net-works can meet the requirements of large capac-ity,high density and low delay in emergency com-munications.This paper analyzes the properties of emergency users in cognitive emergency communi-cation networks,designs a multi-objective optimiza-tion and proposes a novel multi-objective bacterial foraging optimization algorithm based on effective area(MOBFO-EA)to maximize the transmission rate while maximizing the lifecycle of the network.In the algorithm,the effective area is proposed to prevent the algorithm from falling into a local optimum,and the diversity and uniformity of the Pareto-optimal solu-tions distributed in the effective area are used to eval-uate the optimization algorithm.Then,the dynamic preservation is used to enhance the competitiveness of excellent individuals and the uniformity and diversity of the Pareto-optimal solutions in the effective area.Finally,the adaptive step size,adaptive moving direc-tion and inertial weight are used to shorten the search time of bacteria and accelerate the optimization con-vergence.The simulation results show that the pro-posed MOBFO-EA algorithm improves the efficiency of the Pareto-optimal solutions by approximately 55%compared with the MOPSO algorithm and by approx-imately 60%compared with the MOBFO algorithm and has the fastest and smoothest convergence.
基金support from the USA-based research group(Computing and Engineering,Indiana University)the KSA-based research group(Department of Computer Science,King Abdulaziz University).
文摘Complex networks on the Internet of Things(IoT)and brain communication are the main focus of this paper.The benefits of complex networks may be applicable in the future research directions of 6G,photonic,IoT,brain,etc.,communication technologies.Heavy data traffic,huge capacity,minimal level of dynamic latency,etc.are some of the future requirements in 5G+and 6G communication systems.In emerging communication,technologies such as 5G+/6G-based photonic sensor communication and complex networks play an important role in improving future requirements of IoT and brain communication.In this paper,the state of the complex system considered as a complex network(the connection between the brain cells,neurons,etc.)needs measurement for analyzing the functions of the neurons during brain communication.Here,we measure the state of the complex system through observability.Using 5G+/6G-based photonic sensor nodes,finding observability influenced by the concept of contraction provides the stability of neurons.When IoT or any sensors fail to measure the state of the connectivity in the 5G+or 6G communication due to external noise and attacks,some information about the sensor nodes during the communication will be lost.Similarly,neurons considered sing the complex networks concept neuron sensors in the brain lose communication and connections.Therefore,affected sensor nodes in a contraction are equivalent to compensate for maintaining stability conditions.In this compensation,loss of observability depends on the contraction size which is a key factor for employing a complex network.To analyze the observability recovery,we can use a contraction detection algorithm with complex network properties.Our survey paper shows that contraction size will allow us to improve the performance of brain communication,stability of neurons,etc.,through the clustering coefficient considered in the contraction detection algorithm.In addition,we discuss the scalability of IoT communication using 5G+/6G-based photonic technology.
基金supported by the National 863 Project under Grant No.2015AA015701National Nature Science Foundation of China under Grant No. 61421061
文摘Natural disaster or large-scale unexpected events easily make the terrestrial network overloaded,paralyzed, or totally destroyed. It is highly demanded to build an emergency network which can be deployed rapidly, offer high data rate and wide coverage. The emergence of aerial platforms especially the low altitude platforms(LAPs) indicates a stable and reliable direction for the development of emergency network. Hybrid satellite-aerial-terrestrial(HSAT) networks have the ability to provide effective services rather than traditional infrastructures during the emergency situation. In this paper, the aerial platforms and the HSAT networks are surveyed and the key technologies are discussed from several aspects. The challenges of the HSAT networks are also outlined finally.
文摘This paper applies the perspective of business ecosystem to mobile communications industry,trying to help mobile network operators improve their strategies in the era of the third generation mobile communications(3G).According to the definition of the business ecosystem,the ecosystem structure of mobile network operators is analyzed.As an important hub in the ecosystem,mobile network operators are advised to take a keystone strategy.The key points of the strategy are summarized.Finally,suggestions for Chinese mobile network operators are given based on the analysis.
基金supported in part by the National Natural Science Foundation of China(NSFC)under grant numbers U22A2007 and 62171010the Beijing Natural Science Foundation under grant number L212003.
文摘Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wireless propagation environment and the broad coverage pose severe threats to the protection of private data. Emerging covert communications provides a promising solution to achieve robust communication security. Aiming at facilitating the practical implementation of covert communications in space/air networks, we present a tutorial overview of its potentials, scenarios, and key technologies. Specifically, first, the commonly used covertness constraint model, covert performance metrics, and potential application scenarios are briefly introduced. Then, several efficient methods that introduce uncertainty into the covert system are thoroughly summarized, followed by several critical enabling technologies, including joint resource allocation and deployment/trajectory design, multi-antenna and beamforming techniques, reconfigurable intelligent surface(RIS), and artificial intelligence algorithms. Finally, we highlight some open issues for future investigation.
基金supported by the National Key Research and Development Project of China under Grant 2018YFB1801500supported in part by The National Natural Science Foundation of China under Grant 6162780166 and Grant 61831012.
文摘Terahertz(THz)communications have been widely envisioned as a promising enabler to provide adequate bandwidth and achieve ultra-high data rates for sixth generation(6G)wireless networks.In order to mitigate blockage vulnerability caused by serious propagation attenuation and poor diffraction of THz waves,an intelligent reflecting surface(IRS),which manipulates the propagation of incident electromagnetic waves in a programmable manner by adjusting the phase shifts of passive reflecting elements,is proposed to create smart radio environments,improve spectrum efficiency and enhance coverage capability.Firstly,some prospective application scenarios driven by the IRS empowered THz communications are introduced,including wireless mobile communications,secure communications,unmanned aerial vehicle(UAV)scenario,mobile edge computing(MEC)scenario and THz localization scenario.Then,we discuss the enabling technologies employed by the IRS empowered THz system,involving hardware design,channel estimation,capacity optimization,beam control,resource allocation and robustness design.Moreover,the arising challenges and open problems encountered in the future IRS empowered THz communications are also highlighted.Concretely,these emerging problems possibly originate from channel modeling,new material exploration,experimental IRS testbeds and intensive deployment.Ultimately,the combination of THz communications and IRS is capable of accelerating the development of 6G wireless networks.
基金supported in part by the Science and Technology Project of Hebei Education Department(No.ZD2021088)in part by the S&T Major Project of the Science and Technology Ministry of China(No.2017YFE0135700)。
文摘Spatio-temporal cellular network traffic prediction at wide-area level plays an important role in resource reconfiguration,traffic scheduling and intrusion detection,thus potentially supporting connected intelligence of the sixth generation of mobile communications technology(6G).However,the existing studies just focus on the spatio-temporal modeling of traffic data of single network service,such as short message,call,or Internet.It is not conducive to accurate prediction of traffic data,characterised by diverse network service,spatio-temporality and supersize volume.To address this issue,a novel multi-task deep learning framework is developed for citywide cellular network traffic prediction.Functionally,this framework mainly consists of a dual modular feature sharing layer and a multi-task learning layer(DMFS-MT).The former aims at mining long-term spatio-temporal dependencies and local spatio-temporal fluctuation trends in data,respectively,via a new combination of convolutional gated recurrent unit(ConvGRU)and 3-dimensional convolutional neural network(3D-CNN).For the latter,each task is performed for predicting service-specific traffic data based on a fully connected network.On the real-world Telecom Italia dataset,simulation results demonstrate the effectiveness of our proposal through prediction performance measure,spatial pattern comparison and statistical distribution verification.
基金supported by the National Natural Science Foundation of China(62231020)the Youth Innovation Team of Shaanxi Universities。
文摘The foundation of ad hoc networks lies in the guarantee of continuous connectivity.However,critical nodes,whose failure can easily destroy network connectivity,will influence the ad hoc network connectivity significantly.To protect the network efficiently,critical nodes should be identified accurately and rapidly.Unlike existing critical node identification methods for unknown topology that identify critical nodes according to historical information,this paper develops a critical node identification method to relax the prior topology information condition about critical nodes.Specifically,we first deduce a theorem about the minimum communication range for a node through the number of nodes and deployment ranges,and prove the universality of the theorem in a realistic two-dimensional scenario.After that,we analyze the relationship between communication range and degree value for each node and prove that the greater number of nodes within the communication range of a node,the greater degree value of nodes with high probability.Moreover,we develop a novel strategy to improve the accuracy of critical node identification without topology information.Finally,simulation results indicate the proposed strategy can achieve high accuracy and low redundancy while ensuring low time consumption in the scenarios with unknown topology information in ad hoc networks.
基金supported by X-Project funded by the Ministry of Science,ICT&Future Planning under Grant No.NRF-2015R1A2A1A16074929
文摘At present, the major drawback for mobile phones is the issue of power consumption. As one of the alternatives to decrease the power consumption of standard, power-hungry location-based services usually require the knowledge of how individual phone features consume power. A typical phone feature is that the applications related to multimedia streaming utilize more power while receiving, processing, and displaying the multimedia contents, thus contributing to the increased power consumption. There is a growing concern that current battery modules have limited capability in fulfilling the long-term energy need for the progress on the mobile phone because of increasing power consumption during multimedia streaming processes. Considering this, in this paper, we provide an offline meaning sleep-mode method to compute the minimum power consumption comparing with the power-on solution to save power by implementing energy rate adaptation(RA) mechanism based on mobile excess energy level purpose to save battery power use. Our simulation results show that our RA method preserves efficient power while achieving better throughput compared with the mechanism without rate adaptation(WRA).
文摘Public communication infrastructures are susceptible to disasters. Thus, the Emergency Communication Networks(ECNs) of small groups are necessary to maintain real-time communication during disasters. Given that ECNs are self-built by users, the unavailability of infrastructures and the openness of wireless channels render them insecure. ECN security, however, is a rarely studied issue despite of its importance. Here, we propose a security scheme for the ECNs of small groups. Our scheme is based on the optimized Byzantine Generals’ Problem combined with the analysis of trusted security problems in ECNs. Applying the Byzantine Generals’ Problem to ECNs is a novel approach to realize two new functions, debugging and error correction, for ensuring system consistency and accuracy. Given the limitation of terminal devices, the lightweight fast ECDSA algorithm is introduced to guarantee the integrity and security of communication and the efficiency of the network. We implement a simulation to verify the feasibility of the algorithm after theoretical optimization.
基金TraversingNAT/firewallTeachingandResearchAwardProgramforOutstandingYoungTeachersinHighEducationInstitutionsofMOE ,China (No .2 0 0 0 6 5 )
文摘The forthcoming Next Generation Network (NGN) is an all IP network. Multimedia communications over IP networks are a type of bundled session communications, which cannot directly traverse Network Address Translations (NATs) and firewalls even in NGN. To solve the problem that the existing traversal methods are not suitable for service providers to set up a real system in NGN, a Distributed Broker-agent Architecture (DBA) is addressed. DBA is secure and realizable for service providers and enterprises because it is easy to set up and does not need to upgrade the existing devices like Firewalls, NATs or endpoint devices of subscribers. DBA is composed of two-layer distributed agents, the server proxies and the client agents, in which all multimedia communications use shared tunnels to carry signaling messages and media data between broker-agents, and the call signaling is encrypted over Security Socket Layer (SSL) to guarantee the security of calling. Moreover, the function model and multiplexed connection messages format of DBA are designed, which lays a basis for the protocol in the future NGN. In addition, a simple implementation based on H.323 verifyies the main function of traversing firewalls and NATs.
基金This work was supported by the National Natural Science Foundation of China(No.61573310)。
文摘Nowadays,daily human life is closely intertwined with various networks.When natural disasters or malicious attacks break out,the failure of communication infrastructure due to direct destruction or indirect impact tends to cause a massive outage of communications.Emergency communication networks play a significant role in rescue operations.Recently,a flexible and efficient solution has been provided for emergency communications using unmanned aerial vehicles(UAVs).By means of their excellent characteristics,UAVs,serving as aerial base stations(ABSs),can be rapidly deployed to temporarily rebuild a damaged communication network to restore the users’connectivity.In this study,we investigate the use of UAVs as ABSs for an emergency communication scene where user equipment is unevenly distributed and the communication infrastructure has completely failed due to a severe disaster.Effective communication probability(ECP),which integrates throughput coverage and connectivity,is used to evaluate the performance of a communication network.Through simulations,we analyze communication improvements that can be obtained by the flexible deployment of ABSs.The results show a noticeable increase in ECP when some ABSs are deployed in optimal locations.
文摘It has been an exciting journey since the mobile communications and artificial intelligence(AI)were conceived in 1983 and 1956.While both fields evolved independently and profoundly changed communications and computing industries,the rapid convergence of 5th generation mobile communication technology(5G)and AI is beginning to significantly transform the core communication infrastructure,network management,and vertical applications.The paper first outlined the individual roadmaps of mobile communications and AI in the early stage,with a concentration to review the era from 3rd generation mobile communication technology(3G)to 5G when AI and mobile communications started to converge.With regard to telecommunications AI,the progress of AI in the ecosystem of mobile communications was further introduced in detail,including network infrastructure,network operation and management,business operation and management,intelligent applications towards business supporting system(BSS)&operation supporting system(OSS)convergence,verticals and private networks,etc.Then the classifications of AI in telecommunication ecosystems were summarized along with its evolution paths specified by various international telecommunications standardization organizations.Towards the next decade,the prospective roadmap of telecommunications AI was forecasted.In line with 3rd generation partnership project(3GPP)and International Telecommunication Union Radiocommunication Sector(ITU-R)timeline of 5G&6th generation mobile communication technology(6G),the network intelligence following 3GPP and open radio access network(O-RAN)routes,experience and intent-based network management and operation,network AI signaling system,intelligent middle-office based BSS,intelligent customer experience management and policy control driven by BSS&OSS convergence,evolution from service level agreement(SLA)to experience level agreement(ELA),and intelligent private network for verticals were further explored.The paper is concluded with the vision that AI will reshape the future beyond 5G(B5G)/6G landscape,and we need pivot our research and development(R&D),standardizations,and ecosystem to fully take the unprecedented opportunities.
基金Sanming Project of Medicine in Shenzhen(No.SZSM201911007)Shenzhen Stability Support Plan(20200824145152001)。
文摘BACKGROUND:Rapid on-site triage is critical after mass-casualty incidents(MCIs)and other mass injury events.Unmanned aerial vehicles(UAVs)have been used in MCIs to search and rescue wounded individuals,but they mainly depend on the UAV operator’s experience.We used UAVs and artificial intelligence(AI)to provide a new technique for the triage of MCIs and more efficient solutions for emergency rescue.METHODS:This was a preliminary experimental study.We developed an intelligent triage system based on two AI algorithms,namely OpenPose and YOLO.Volunteers were recruited to simulate the MCI scene and triage,combined with UAV and Fifth Generation(5G)Mobile Communication Technology real-time transmission technique,to achieve triage in the simulated MCI scene.RESULTS:Seven postures were designed and recognized to achieve brief but meaningful triage in MCIs.Eight volunteers participated in the MCI simulation scenario.The results of simulation scenarios showed that the proposed method was feasible in tasks of triage for MCIs.CONCLUSION:The proposed technique may provide an alternative technique for the triage of MCIs and is an innovative method in emergency rescue.
基金supported by the National Natural Science Foundation of China(62021005).
文摘New energy power generation equipment has the characteristics of diurnal, perturbative, seasonal, and periodic power generation, which makes new power optical communication network(POCN) more dynamic and changeable. This is directly reflected in the dynamics of the link risk and service importance of the POCN. In this paper, aiming at the problem of the dynamic importance of service in POCN, and the resulting power optical communication network reliability decline problem, a new energy POCN dynamic routing intelligence algorithm based on service importance prediction is proposed. Based on the short-term power generation of new energy power station, the importance of each service and the risk degree of each link are predicted. Link weights are dynamically adjusted, and k-shortest path(KSP) algorithm is used to calculate route results. When network resources are insufficient, low-importance services can give way to prevent a large number of high-importance services from being blocked. Simulation results show that compared with the traditional KSP algorithm, the prediction-based dynamic routing intelligent(P-DRI) algorithm can reduce the service blocking probability by 55.59%, and reduce the average importance of blocking services by 44.77% at the cost of about 6.17% of the calculation delay.
基金supported by the National Key Project of Research and Development Plan during the fourteenth Five-year Plan Period(2022YFC2503400).
文摘Robotic-assisted percutaneous coronary intervention(R-PCI)is an innovative way of performing percutaneous coronary intervention(PCI)whereby the operator can manipulate coronary intraluminal guidewires and catheter devices by using remotely controlled technology.Performing tele-R-PCI from a remote location via fifth generation network communication technology has never been reported in China;however,if this were possible,the technique could be used to treat many patients with coronary artery disease who would otherwise not have the opportunity of treatment.The case of a 73-year-old male patient with coronary artery disease who underwent successful tele-R-PCI at 800 km from the operators is presented.Performing long-distance teleR-PCI in patients with coronary artery disease is feasible with predictably successful outcomes when reliable network connectivity and local cardiac catheterization facilities are present.
基金supported by the National Key R&D Program of China(No.2020YFB1807002)the China Postdoctoral Science Foundation(No.2020M680949)+1 种基金the Open Research fund of State Key Laboratory of Integrated Services Networks,China(No.ISN22-22)the National Natural Science Foundation of China(Nos.61871065 and U1836201)。
文摘Unmanned Aerial Vehicles(UAVs) have received a wide range of attention for military and commercial applications. Enhanced with communication capability, UAVs are considered to play important roles in the Sixth Generation(6G) networks due to their low cost and flexible deployment. 6G is supposed to be an all-coverage network to provide ubiquitous connections for space, air, ground and underwater. UAVs are able to provide air-borne wireless coverage flexibly,serving as aerial base stations for ground users, as relays to connect isolated nodes, or as mobile users in cellular networks. However, the onboard energy of small UAVs is extremely limited. Thus,UAVs can be only deployed to establish wireless links temporarily. Prolonging the lifetime and developing green UAV communication with low power consumption becomes a critical challenge.In this article, a comprehensive survey on green UAV communications for 6G is carried out. Specifically, the typical UAVs and their energy consumption models are introduced. Then, the typical trends of green UAV communications are provided. In addition, the typical applications of UAVs and their green designs are discussed. Finally, several promising techniques and open research issues are also pointed out.