期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Nickase-dependent isothermal DNA amplification 被引量:1
1
作者 Yan He Tao Jiang 《Advances in Bioscience and Biotechnology》 2013年第4期539-542,共4页
We developed a nicking endonuclease dependent DNA amplification (NDA), using Nt.BstNBI to catalyze single-stranded nick on double-stranded DNA, and Bst DNA polymerase to make extension while sealing the nick and displ... We developed a nicking endonuclease dependent DNA amplification (NDA), using Nt.BstNBI to catalyze single-stranded nick on double-stranded DNA, and Bst DNA polymerase to make extension while sealing the nick and displacing the downstream strand. The displaced single-stranded DNA thereby serves as template for primers hybridization and extension, resulting in exponential synthesis of target DNA under isothermal condition. Over 105 folds target DNA amplification can be achieved in 30 minutes, generating DNA product suitable for both diagnosis and DNA cloning. This NDA strategy does not require thermal cycling or prerequisite nucleotides modification, making it suitable for application in the field and at the point-of-care. 展开更多
关键词 DNA AMPLIFICATION DNA POLYMERASE ISOTHERMAL nickase STRAND DISPLACEMENT
下载PDF
Shortening the sgRNA-DNA interface enables SpCas9 and eSpCas9(1.1)to nick the target DNA strand 被引量:4
2
作者 Rong Fan Zhuangzhuang Chai +7 位作者 Sinian Xing Kunling Chen Fengti Qiu Tuanyao Chai Jin-Long Qiu Zhengbin Zhang Huawei Zhang Caixia Gao 《Science China(Life Sciences)》 SCIE CAS CSCD 2020年第11期1619-1630,共12页
The length of the sgRNA-DNA complementary sequence is a key factor influencing the cleavage activity of Streptococcus pyogenes Cas9(SpCas9)and its variants.The detailed mechanism remains unknown.Here,based on in vitro... The length of the sgRNA-DNA complementary sequence is a key factor influencing the cleavage activity of Streptococcus pyogenes Cas9(SpCas9)and its variants.The detailed mechanism remains unknown.Here,based on in vitro cleavage assays and base editing analysis,we demonstrate that reducing the length of this complementary region can confer nickase activity on SpCas9 and eSpCas9(1.1).We also show that these nicks are made on the target DNA strand.These properties encouraged us to develop a dual-functional system that simultaneously carries out double-strand DNA cleavage and C-to-T base conversions at separate targets.This system provides a novel tool for achieving trait stacking in plants. 展开更多
关键词 SpCas9 eSpCas9(1.1) truncated spacer DSB nickase co-editing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部