The leaching of chromium from stainless steel dust (SSD) is deleterious to the environment. To address this issue, the reduction of SSD briquettes can be employed to effectively extract chromium. The recovery rates ...The leaching of chromium from stainless steel dust (SSD) is deleterious to the environment. To address this issue, the reduction of SSD briquettes can be employed to effectively extract chromium. The recovery rates of iron, chromium, and nickel via ironbath reduction of SSD briquettes were determined using X-ray fluorescence spectroscopy, X-ray diffraction, and scanning electron microscopy measurements. First, the effects of basicity and contents of silicon, iron, CaF2, and carbon on the recovery rates of the three metals were analyzed using the slag amount prediction model, which was originally established from the A1203 balance of corundum crucible erosion behavior. Second, the effect of feeding mode, i.e., whether steel scrap and SSD briquettes were simultaneously added, on the recovery rates was discussed in detail. Third, the iron-bath reduction of SSD briquettes was thermodynamically analyzed. The results indicated that the recovery rates of the three metals are greater than 95% those of using a basicity of 1.5 and 6.0% CaF2, 15% carbon, and 7% ferrosilicon. The recovery rate of chromium increases twofold with the addition of ferrosilicon. The feeding mode of adding briquettes and steel scrap simultaneously is better for recovery of metals and separation of the metal and slag than the feeding mode of adding steel scrap firstly and then briquettes.展开更多
基金This research was supported by the National Natural Science Foundation of China (Grant No. 51304053), Jiangxi University of Science and Technology Doctoral Start-up Fund (No. 3401223181).
文摘The leaching of chromium from stainless steel dust (SSD) is deleterious to the environment. To address this issue, the reduction of SSD briquettes can be employed to effectively extract chromium. The recovery rates of iron, chromium, and nickel via ironbath reduction of SSD briquettes were determined using X-ray fluorescence spectroscopy, X-ray diffraction, and scanning electron microscopy measurements. First, the effects of basicity and contents of silicon, iron, CaF2, and carbon on the recovery rates of the three metals were analyzed using the slag amount prediction model, which was originally established from the A1203 balance of corundum crucible erosion behavior. Second, the effect of feeding mode, i.e., whether steel scrap and SSD briquettes were simultaneously added, on the recovery rates was discussed in detail. Third, the iron-bath reduction of SSD briquettes was thermodynamically analyzed. The results indicated that the recovery rates of the three metals are greater than 95% those of using a basicity of 1.5 and 6.0% CaF2, 15% carbon, and 7% ferrosilicon. The recovery rate of chromium increases twofold with the addition of ferrosilicon. The feeding mode of adding briquettes and steel scrap simultaneously is better for recovery of metals and separation of the metal and slag than the feeding mode of adding steel scrap firstly and then briquettes.