The effect of La on the performance of a supported RuB amorphous alloy catalyst for benzene selective hydrogenation was studied by means of activity and selectivity tests, such as HRTEM, SAED, XPS, and XRD. The result...The effect of La on the performance of a supported RuB amorphous alloy catalyst for benzene selective hydrogenation was studied by means of activity and selectivity tests, such as HRTEM, SAED, XPS, and XRD. The results show that the addition of La to RuB amorphous alloy catalyst can evidently increase the activity and improve the thermal stability of RuB amorphous alloy to refrain its crystallization. The promoting effect of La on the activity of RuB amorphous alloy catalyst is because of the high dispersion of the active components.展开更多
The feasibility of the hydrogenation of benzene into cyclohexane over the hydrogen storage alloy MlNi 5 catalyst was studied in the temperature range of 402~463 K. The results show that the reaction order is zero an...The feasibility of the hydrogenation of benzene into cyclohexane over the hydrogen storage alloy MlNi 5 catalyst was studied in the temperature range of 402~463 K. The results show that the reaction order is zero and the energy of activation is 28.9 kJ·mol -1 .展开更多
Hydrogen purification must be done to meet the different purposes of hydrogen utilization.In the present work,it is confirmed that the catalyst Ni/CeO2 has the highest activity for total methanation(Total MET) of CO a...Hydrogen purification must be done to meet the different purposes of hydrogen utilization.In the present work,it is confirmed that the catalyst Ni/CeO2 has the highest activity for total methanation(Total MET) of CO and CO2,and is thus most suitable for hydrogen purification for ammonia synthesis.While,the catalyst Ni/ZrO2 appears the best one for selective methanation of CO(CO-SMET) in the H2-rich gas to produce clean fuel for proton exchange membrane fuel cell(PEMFC).In spite of this,the catalyst Ni/ZrO2 without adding chlorine ions as promoter is not yet capable of removing the CO in the reformate gas to below 10 ppm in a wide reaction temperature range by the way of CO-SMET.Adding chlorine ions as promoter is indeed not favorable for practical application due to its gradual loss in the catalytic reaction as proved in our previous work.Therefore,a step to decrease CO2 concentration(called as de-CO2 step) is suggested to be set prior to the CO-SMET step in this work.It is proved that such combination of de-CO2 step and CO-SMET step is efficient to achieve a deep removal of CO to below 10 ppm with a high selectivity more than 50% in a wide reaction temperature range of 220-280℃over the catalyst Ni/ZrO2 without adding chlorine ions as promoter.The combined process has potential for practical application,at least in the large-scale power plant of PEMFC.展开更多
文摘The effect of La on the performance of a supported RuB amorphous alloy catalyst for benzene selective hydrogenation was studied by means of activity and selectivity tests, such as HRTEM, SAED, XPS, and XRD. The results show that the addition of La to RuB amorphous alloy catalyst can evidently increase the activity and improve the thermal stability of RuB amorphous alloy to refrain its crystallization. The promoting effect of La on the activity of RuB amorphous alloy catalyst is because of the high dispersion of the active components.
文摘The feasibility of the hydrogenation of benzene into cyclohexane over the hydrogen storage alloy MlNi 5 catalyst was studied in the temperature range of 402~463 K. The results show that the reaction order is zero and the energy of activation is 28.9 kJ·mol -1 .
基金Project supported by the National Natural Science Foundation of China(21643008)
文摘Hydrogen purification must be done to meet the different purposes of hydrogen utilization.In the present work,it is confirmed that the catalyst Ni/CeO2 has the highest activity for total methanation(Total MET) of CO and CO2,and is thus most suitable for hydrogen purification for ammonia synthesis.While,the catalyst Ni/ZrO2 appears the best one for selective methanation of CO(CO-SMET) in the H2-rich gas to produce clean fuel for proton exchange membrane fuel cell(PEMFC).In spite of this,the catalyst Ni/ZrO2 without adding chlorine ions as promoter is not yet capable of removing the CO in the reformate gas to below 10 ppm in a wide reaction temperature range by the way of CO-SMET.Adding chlorine ions as promoter is indeed not favorable for practical application due to its gradual loss in the catalytic reaction as proved in our previous work.Therefore,a step to decrease CO2 concentration(called as de-CO2 step) is suggested to be set prior to the CO-SMET step in this work.It is proved that such combination of de-CO2 step and CO-SMET step is efficient to achieve a deep removal of CO to below 10 ppm with a high selectivity more than 50% in a wide reaction temperature range of 220-280℃over the catalyst Ni/ZrO2 without adding chlorine ions as promoter.The combined process has potential for practical application,at least in the large-scale power plant of PEMFC.