In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. T...In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. The results showed that MgO support with the higher specific surface area led to the higher dispersion of the active metal, which resulted in the higher initial activity. On the other hand, the specific surface area of MgO materials might not be the dominant factor for the basicity of support to chemisorb and activate CO2, which was another important factor for the performance of catalysts. Herein, Ni/MgO(CA) catalyst with proper specific surface area and strong ability to activate CO2exhibited stable catalytic property and the carbon species deposited on the Ni/MgO(CA) catalyst after 10 h of reaction at 650 ?C were mainly activated carbon species.展开更多
Results of research of supercritical fluid CO2-regeneration process of Nickel-Molybdenum Catalysts DN-3531 and Criterion 514 are given. Regeneration was carried out with the use of pure supercritical carbon dioxide an...Results of research of supercritical fluid CO2-regeneration process of Nickel-Molybdenum Catalysts DN-3531 and Criterion 514 are given. Regeneration was carried out with the use of pure supercritical carbon dioxide and mixture of supercritical carbon dioxide and various polar cosolvents. Regeneration process is carried out along isotherms, in the temperature range of 323 - 383 K, at pressures of P = 20 MPa and 30 MPa. Results of surface assessment of the catalyst samples regenerated show high effectiveness of suggested method.展开更多
In this research,new catalyst with high industrial impact is developed,which can catalyze the conversion of CO2 to methane through methanation reaction.A series of catalysts based on nickel oxide were prepared using w...In this research,new catalyst with high industrial impact is developed,which can catalyze the conversion of CO2 to methane through methanation reaction.A series of catalysts based on nickel oxide were prepared using wetness impregnation technique and ageing,followed by calcination at 400℃.Rh/Ni(30:70)/Al2O3 catalyst was revealed as the most potential catalyst based on the results of catalytic activity measurement monitored by Fourier Transform Infrared Spectroscopy(FTIR)and Gas Chromatography(GC).The results showed 90.1%CO2 conversion and 70.8% yield at 400℃.展开更多
Supported gold catalysts show high activity toward CO oxidation, and the nature of the support significantly affects the catalytic activity. Herein, serial Ni doping of thin porous Al2 O3 nanosheets was performed via ...Supported gold catalysts show high activity toward CO oxidation, and the nature of the support significantly affects the catalytic activity. Herein, serial Ni doping of thin porous Al2 O3 nanosheets was performed via a precipitation-hydrothermal method by varying the amount of Ni during the precipitation step. The prepared nanosheets were subsequently used as supports for the deposition of Au nanoparticles(NPs). The obtained Au/Nix Al catalysts were studied in the context of CO oxidation to determine the effect of Ni doping on the supports. Enhanced catalytic performances were obtained for the Au/Nix Al catalysts compared with those of the Au supported on bare Al2 O3. The Ni content and pretreatment atmosphere were both shown to influence the catalytic activity. Pretreatment under a reducing atmosphere was beneficial for improving catalytic activity. The highest activity was observed for the catalysts with a Ni/Al molar ratio of 0.05, achieving complete CO conversion at 20 °C with a gold loading of 1 wt%. The in-situ FTIR results showed that the introduction of Ni strengthened CO adsorption on the Au NPs. The H2-TPR and O2-TPD results indicated that the introduction of Ni produced new oxygen vacancies and allowed the oxygen molecules to be adsorbed and activated more easily. The improved catalytic performance after doping Ni was attributed to the smaller size of the Au NPs and more active oxygen species.展开更多
Several researches have been reported about the characteristic of β-Ga_2O_3 nanowires which was synthesized on nickel oxide particle.But indeed,recent researches about synthesis of β-Ga_2O_3 nanowires on oxide-assis...Several researches have been reported about the characteristic of β-Ga_2O_3 nanowires which was synthesized on nickel oxide particle.But indeed,recent researches about synthesis of β-Ga_2O_3 nanowires on oxide-assisted transition metal are limited to nickel or cobalt oxide catalyst.In this work,Gallium oxide(β-Ga_2O_3)nanowires were synthesized by a simple thermal evaporation method from gallium powder in the range of 700-1000℃ using the iron,nickel,copper,cobalt and zinc oxide as a catalyst,respectively.The β-Ga_2O_3 nanowires with single crystalline without defects were successfully synthesized at the reaction temperature of 850,900 and 950℃ in all the catalysts.But optimum experimental condition in synthesis of nanowires varied with the kind of catalyst.As increasing synthesis temperature,the morphology of gallium oxide nanowires changed from nanowires to nanorods,and its diameter increased.From these results,we could be proposed that the growth mechanism of β-Ga_2O_3 nanowires was changed with synthesis temperature of nanowires.Microstructure and morphology of Synthesized nanowire was characterized by HR-TEM,FE-SEM,EDX and XRD.展开更多
The Pt decorated Ni/C nanocatalysts were prepared for hydrogen oxidation reaction(HOR) in fuel cell.By regulating the contents of Pt and Ni in the catalyst,both the composition and the structure affected the electro...The Pt decorated Ni/C nanocatalysts were prepared for hydrogen oxidation reaction(HOR) in fuel cell.By regulating the contents of Pt and Ni in the catalyst,both the composition and the structure affected the electrochemical catalytic characteristics of the Pt-Ni/C catalysts.When the Pt mass content was 3.1% percent and that of Ni was 13.9% percent,the Pt-Ni/C-3 catalyst exhibited a larger electrochemically active surface area and a higher exchange current density toward HOR than those of pure supported platinum sample.Our study demonstrates a feasible approach for designing the more efficient catalysts with lower content of noble metal for HOR in fuel cell.展开更多
Ni‐CeO2 catalysts with a nickel content of 50 mol% were prepared using RF thermal plasma, and their catalytic activities for methane partial oxidation were characterized. For the synthesis of Ni‐CeO2 catalysts, a pr...Ni‐CeO2 catalysts with a nickel content of 50 mol% were prepared using RF thermal plasma, and their catalytic activities for methane partial oxidation were characterized. For the synthesis of Ni‐CeO2 catalysts, a precursor containing Ni(~5‐μm diameter) and CeO2(~200‐nm diameter)powders were heated simultaneously using an RF plasma at a power level of ~52 kVA and a powder feeding rate of ~120 g/h. From the X‐ray diffraction data and transmission electron microscopy images, the precursor formed into high crystalline CeO2 supports with nanosized Ni particles( 50‐nm diameter) on their surfaces. The catalytic performance was evaluated under atmospheric pressure at 500 °C and a CH4:O2 molar ratio of 2:1 with Ar diluent. Although the Ni content was high(~50 mol%), the experimental results reveal a methane conversion rate of 70%, selectivities of CO and H2 greater than 90% and slight carbon coking during an on‐stream test at 550 °C for 24 h.However, at 750 °C, the on‐stream test revealed the formation of filament‐like carbons with an increased methane conversion rate over 90%.展开更多
The influence of the drop-casted nickel boride catalyst loading on glassy carbon electrodes was investigated in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in alkaline glycerol electrooxidation.The c...The influence of the drop-casted nickel boride catalyst loading on glassy carbon electrodes was investigated in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in alkaline glycerol electrooxidation.The continuously operated radial flow cell consisted of a borehole electrode positioned 50μm above an internal reflection element enabling operando FTIR spectroscopy.It is identified as a suitable tool for facile and reproducible screening of electrocatalysts under well-defined conditions,additionally providing access to the selectivities in complex reaction networks such as glycerol oxidation.The fast product identification by ATR-IR spectroscopy was validated by the more time-consuming quantitative HPLC analysis of the pumped electrolyte.High degrees of glycerol conversion were achieved under the applied laminar flow conditions using 0.1 M glycerol and 1 M KOH in water and a flow rate of 5μL min^(–1).Conversion and selectivity were found to depend on the catalyst loading,which determined the catalyst layer thickness and roughness.The highest loading of 210μg cm^(–2)resulted in 73%conversion and a higher formate selectivity of almost 80%,which is ascribed to longer residence times in rougher films favoring readsorption and C–C bond scission.The lowest loading of 13μg cm^(–2)was sufficient to reach 63%conversion,a lower formate selectivity of 60%,and,correspondingly,higher selectivities of C_(2)species such as glycolate amounting to 8%.Thus,only low catalyst loadings resulting in very thin films in the fewμm thickness range are suitable for reliable catalyst screening.展开更多
The effect of CeO2 and CaO promoters on the ignition performance over Ni/MgO-Al2O3 catalyst for the partial oxidation of methane (POM) to synthesis gas was investigated. It was found that the POM reaction could not ...The effect of CeO2 and CaO promoters on the ignition performance over Ni/MgO-Al2O3 catalyst for the partial oxidation of methane (POM) to synthesis gas was investigated. It was found that the POM reaction could not be ignited over lwt%Ni/MgO-Al2O3 catalyst without the promoters in the temperature range from 773 K to 1073 K. CeO2 and CaO promoters enhanced the ignition performance and the POM reactivity of lwt%Ni/MgO-Al2O3 catalyst remarkably. Moreover, the improving effect became greater with the increase of the promoter content under the investigated reactiorrconditions. The modification effects of CeO2 and CaO promoters were closely related to the concentration and reducibility of the surface and bulk oxygen species.展开更多
A new monolithic Ni/ CeO2-ZrO2/γ-Al2O3 catalyst for combined partial oxidation and CO2 reforming of methane was prepared. The result shows that the addition of O2 to the feed can improve the activity of the catalyst ...A new monolithic Ni/ CeO2-ZrO2/γ-Al2O3 catalyst for combined partial oxidation and CO2 reforming of methane was prepared. The result shows that the addition of O2 to the feed can improve the activity of the catalyst and adjust the H2/CO ratio of the productive gases.展开更多
Oxidative coupling of methane (OCM) is a promising way to convert methane into C2 hydrocarbons.However,CO2 and H2O are by-products of the reaction.To utilize the higher activity of lanthanum oxide and save its usage...Oxidative coupling of methane (OCM) is a promising way to convert methane into C2 hydrocarbons.However,CO2 and H2O are by-products of the reaction.To utilize the higher activity of lanthanum oxide and save its usage,MgO supported La2O3 catalyst was prepared.Surface modification of the catalyst with nitric acid was made to suppress the formation of the by-products.Experimental results indicated that the addition of nitric acid increased the surface oxygen species with binding energy of ca.531.7 eV and at the same time reduced the pore volume of the catalyst.These effects of nitric acid finally led to the increase of C2 selectivity and the decrease of the by-products formation.Hydrogen selectivity was found about 14%-18% over the catalysts adopted in this work.展开更多
In recent years,magnesium(Mg)has evolved as a salient material,in affiliation with electroless nickel(Ni)coating,which have found applications in automobiles,aerospace and confederate fields attributing to its excelle...In recent years,magnesium(Mg)has evolved as a salient material,in affiliation with electroless nickel(Ni)coating,which have found applications in automobiles,aerospace and confederate fields attributing to its excellent inherent weight sensitive properties.However,being acknowledged for its remarkable auxiliary properties like flexible machining,appreciable weight sensitivity and ability to be patently diecast into mesh constructs,magnesium is prejudiced by aeronautical standards predominantly for its inferior corrosion resistance properties.In this sense,electroless nickel plating on magnesium and its alloys has been suggested to extricate it from corrosion problem and make it more competitive in industrial and defence applications.Autocatalytic fixation of metal ions onto respective substrates accrues and alters their mechanical,electrochemical and tribological properties,destitute of any electric current aid.This proficiently identified technique is prosecuted with the assistance of a series of sequenced operations involving a prior pretreatment,which corresponds to the chemical cleaning of the substrate surface;electroless coating;and a later activation process which is a mild etching of the electroless coated surface.The susceptibility of magnesium to this methodology has advanced and propagated its exercise and applicability in aircraft,satellites and allied aeronautical fields.Contemporarily,researchers have proposed various eco-friendly and modified duplex and composite coatings which have transmuted properties of these appendages by tailoring alloy compositions and reagents employed.This review article systematically colligates various considerations and evaluations on electroless nickel applications of magnesium and its alloys and explicates how it anchors its practice in the respective domains.Furthermore,a comprehensive analysis is devised based on the pre-existing treatment methods for accomplishing the same.展开更多
Four perovskite-type complex oxides (LaNiO_3, La_2NiO_4, LaCoO_3 andLa_2CoO_4) were successfully prepared using two sol-gel methods, the Pechini method (PC) and thecitric acid complexing method (CC). The catalysts wer...Four perovskite-type complex oxides (LaNiO_3, La_2NiO_4, LaCoO_3 andLa_2CoO_4) were successfully prepared using two sol-gel methods, the Pechini method (PC) and thecitric acid complexing method (CC). The catalysts were characterized by XRD and TPR. Afterreduction, the activity of the catalysts in the CO_2 reforming of methane was tested. Ni-basedcatalysts from La_2NiO_4 precursors were the most active and stable catalyst after calcination above850 ℃, which gave a methane conversion of 0.025 mmol/(g·s) for those prepared by the PC methodand 0.020 mmol/(g·s) by the CC method. It was proposed that the well-defined structure and lowerreducibility is responsible for the unusual catalytic behavior observed over the pre-reducedLa2NiO_4 catalyst.展开更多
Oxidative dehydrogenation of propane has been an ever-growing field for propylene production due to its exothermic properties,of which overoxidation is the major drawback,with CO and even CO_(2) as undesired by-produc...Oxidative dehydrogenation of propane has been an ever-growing field for propylene production due to its exothermic properties,of which overoxidation is the major drawback,with CO and even CO_(2) as undesired by-products.For the purpose of getting higher propylene selectivity as well as yield,herein,we report Ni single atoms supported on calcium aluminate as an efficient catalyst candidate for propane oxidative dehydrogenation.Beneficial from higher valence states of Ni1 species,it shows 2—3 times as much propylene selectivity as that of Ni nanoparticles.About 14.2%C_(3)H_(6) yield with 47.3%propylene selectivity has been achieved on Ni single atom catalyst and a good stability during 20 h test can be obtained as well.展开更多
A novel K2O and La2O3 promoted nickel catalyst supported on a-Al2O3 was prepared by co-impregnation method, and it exhibited higher activity and 6-aminocapronitrile selectivity than Ni/a-Al2O3 during the hydrogenation...A novel K2O and La2O3 promoted nickel catalyst supported on a-Al2O3 was prepared by co-impregnation method, and it exhibited higher activity and 6-aminocapronitrile selectivity than Ni/a-Al2O3 during the hydrogenation of adiponitrile in the absence of ammonia, i.e., K2O and La2O3 improved the performance of the nickel-based catalyst.展开更多
Nanostructured -y-A12O3 with high surface area and mesoporous structure was synthesized by sol-gel method and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared sa...Nanostructured -y-A12O3 with high surface area and mesoporous structure was synthesized by sol-gel method and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by XRD, N2 adsorption-desorption, TPR, TPO, TPH, NH3-TPD and SEM techniques. The BET analysis showed a high surface area of 204 m2.g-1 and a narrow pore-size distribution centered at a diameter of 5.5 nm for catalyst support. The BET results revealed that addition of lanthanum oxide to aluminum oxide decreased the specific surface area. In addition, TPR results showed that addition of lanthanum oxide increased the reducibility of nickel catalyst. The catalytic evaluation results showed an increase in methane conversion with increasing lanthanum oxide to 3 mol% and further increase in lanthanum content decreased the catalytic activity. TPO analysis revealed that the coke deposition decreased with increasing lanthanum oxide to 3 mol%. SEM and TPH analyses confirmed the formation of whisker type carbon over the spent catalysts. Addition of steam and Oxide to drv reformin feed increased the methane conversion and led to carbon free ooeration in combined orocesses.展开更多
基金supported by the South-Central University for Nationalities(CZZ12002)
文摘In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. The results showed that MgO support with the higher specific surface area led to the higher dispersion of the active metal, which resulted in the higher initial activity. On the other hand, the specific surface area of MgO materials might not be the dominant factor for the basicity of support to chemisorb and activate CO2, which was another important factor for the performance of catalysts. Herein, Ni/MgO(CA) catalyst with proper specific surface area and strong ability to activate CO2exhibited stable catalytic property and the carbon species deposited on the Ni/MgO(CA) catalyst after 10 h of reaction at 650 ?C were mainly activated carbon species.
文摘Results of research of supercritical fluid CO2-regeneration process of Nickel-Molybdenum Catalysts DN-3531 and Criterion 514 are given. Regeneration was carried out with the use of pure supercritical carbon dioxide and mixture of supercritical carbon dioxide and various polar cosolvents. Regeneration process is carried out along isotherms, in the temperature range of 323 - 383 K, at pressures of P = 20 MPa and 30 MPa. Results of surface assessment of the catalyst samples regenerated show high effectiveness of suggested method.
基金supported by the Universiti Teknologi Malaysia and Ministry of Science,Technology and Innovation,Malaysia(Vote 79252)
文摘In this research,new catalyst with high industrial impact is developed,which can catalyze the conversion of CO2 to methane through methanation reaction.A series of catalysts based on nickel oxide were prepared using wetness impregnation technique and ageing,followed by calcination at 400℃.Rh/Ni(30:70)/Al2O3 catalyst was revealed as the most potential catalyst based on the results of catalytic activity measurement monitored by Fourier Transform Infrared Spectroscopy(FTIR)and Gas Chromatography(GC).The results showed 90.1%CO2 conversion and 70.8% yield at 400℃.
文摘Supported gold catalysts show high activity toward CO oxidation, and the nature of the support significantly affects the catalytic activity. Herein, serial Ni doping of thin porous Al2 O3 nanosheets was performed via a precipitation-hydrothermal method by varying the amount of Ni during the precipitation step. The prepared nanosheets were subsequently used as supports for the deposition of Au nanoparticles(NPs). The obtained Au/Nix Al catalysts were studied in the context of CO oxidation to determine the effect of Ni doping on the supports. Enhanced catalytic performances were obtained for the Au/Nix Al catalysts compared with those of the Au supported on bare Al2 O3. The Ni content and pretreatment atmosphere were both shown to influence the catalytic activity. Pretreatment under a reducing atmosphere was beneficial for improving catalytic activity. The highest activity was observed for the catalysts with a Ni/Al molar ratio of 0.05, achieving complete CO conversion at 20 °C with a gold loading of 1 wt%. The in-situ FTIR results showed that the introduction of Ni strengthened CO adsorption on the Au NPs. The H2-TPR and O2-TPD results indicated that the introduction of Ni produced new oxygen vacancies and allowed the oxygen molecules to be adsorbed and activated more easily. The improved catalytic performance after doping Ni was attributed to the smaller size of the Au NPs and more active oxygen species.
文摘Several researches have been reported about the characteristic of β-Ga_2O_3 nanowires which was synthesized on nickel oxide particle.But indeed,recent researches about synthesis of β-Ga_2O_3 nanowires on oxide-assisted transition metal are limited to nickel or cobalt oxide catalyst.In this work,Gallium oxide(β-Ga_2O_3)nanowires were synthesized by a simple thermal evaporation method from gallium powder in the range of 700-1000℃ using the iron,nickel,copper,cobalt and zinc oxide as a catalyst,respectively.The β-Ga_2O_3 nanowires with single crystalline without defects were successfully synthesized at the reaction temperature of 850,900 and 950℃ in all the catalysts.But optimum experimental condition in synthesis of nanowires varied with the kind of catalyst.As increasing synthesis temperature,the morphology of gallium oxide nanowires changed from nanowires to nanorods,and its diameter increased.From these results,we could be proposed that the growth mechanism of β-Ga_2O_3 nanowires was changed with synthesis temperature of nanowires.Microstructure and morphology of Synthesized nanowire was characterized by HR-TEM,FE-SEM,EDX and XRD.
基金supported by the National Natural Science Foundation of China (21476145)~~
文摘The Pt decorated Ni/C nanocatalysts were prepared for hydrogen oxidation reaction(HOR) in fuel cell.By regulating the contents of Pt and Ni in the catalyst,both the composition and the structure affected the electrochemical catalytic characteristics of the Pt-Ni/C catalysts.When the Pt mass content was 3.1% percent and that of Ni was 13.9% percent,the Pt-Ni/C-3 catalyst exhibited a larger electrochemically active surface area and a higher exchange current density toward HOR than those of pure supported platinum sample.Our study demonstrates a feasible approach for designing the more efficient catalysts with lower content of noble metal for HOR in fuel cell.
基金supported by Renewable Energy Technologies Development Program(No.2008NFC02J0200002009)Technology Innovation Program(No.10048910)funded by the Ministry of Trade,Industry and Energy(MI,Korea)
文摘Ni‐CeO2 catalysts with a nickel content of 50 mol% were prepared using RF thermal plasma, and their catalytic activities for methane partial oxidation were characterized. For the synthesis of Ni‐CeO2 catalysts, a precursor containing Ni(~5‐μm diameter) and CeO2(~200‐nm diameter)powders were heated simultaneously using an RF plasma at a power level of ~52 kVA and a powder feeding rate of ~120 g/h. From the X‐ray diffraction data and transmission electron microscopy images, the precursor formed into high crystalline CeO2 supports with nanosized Ni particles( 50‐nm diameter) on their surfaces. The catalytic performance was evaluated under atmospheric pressure at 500 °C and a CH4:O2 molar ratio of 2:1 with Ar diluent. Although the Ni content was high(~50 mol%), the experimental results reveal a methane conversion rate of 70%, selectivities of CO and H2 greater than 90% and slight carbon coking during an on‐stream test at 550 °C for 24 h.However, at 750 °C, the on‐stream test revealed the formation of filament‐like carbons with an increased methane conversion rate over 90%.
文摘The influence of the drop-casted nickel boride catalyst loading on glassy carbon electrodes was investigated in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in alkaline glycerol electrooxidation.The continuously operated radial flow cell consisted of a borehole electrode positioned 50μm above an internal reflection element enabling operando FTIR spectroscopy.It is identified as a suitable tool for facile and reproducible screening of electrocatalysts under well-defined conditions,additionally providing access to the selectivities in complex reaction networks such as glycerol oxidation.The fast product identification by ATR-IR spectroscopy was validated by the more time-consuming quantitative HPLC analysis of the pumped electrolyte.High degrees of glycerol conversion were achieved under the applied laminar flow conditions using 0.1 M glycerol and 1 M KOH in water and a flow rate of 5μL min^(–1).Conversion and selectivity were found to depend on the catalyst loading,which determined the catalyst layer thickness and roughness.The highest loading of 210μg cm^(–2)resulted in 73%conversion and a higher formate selectivity of almost 80%,which is ascribed to longer residence times in rougher films favoring readsorption and C–C bond scission.The lowest loading of 13μg cm^(–2)was sufficient to reach 63%conversion,a lower formate selectivity of 60%,and,correspondingly,higher selectivities of C_(2)species such as glycolate amounting to 8%.Thus,only low catalyst loadings resulting in very thin films in the fewμm thickness range are suitable for reliable catalyst screening.
文摘The effect of CeO2 and CaO promoters on the ignition performance over Ni/MgO-Al2O3 catalyst for the partial oxidation of methane (POM) to synthesis gas was investigated. It was found that the POM reaction could not be ignited over lwt%Ni/MgO-Al2O3 catalyst without the promoters in the temperature range from 773 K to 1073 K. CeO2 and CaO promoters enhanced the ignition performance and the POM reactivity of lwt%Ni/MgO-Al2O3 catalyst remarkably. Moreover, the improving effect became greater with the increase of the promoter content under the investigated reactiorrconditions. The modification effects of CeO2 and CaO promoters were closely related to the concentration and reducibility of the surface and bulk oxygen species.
基金The authots would like to thank the National Natural Science Foundation of China(No:20273043)the National Key Basic Reseatch Project of China(G 1999022407)for providing financial support for this project.
文摘A new monolithic Ni/ CeO2-ZrO2/γ-Al2O3 catalyst for combined partial oxidation and CO2 reforming of methane was prepared. The result shows that the addition of O2 to the feed can improve the activity of the catalyst and adjust the H2/CO ratio of the productive gases.
文摘Oxidative coupling of methane (OCM) is a promising way to convert methane into C2 hydrocarbons.However,CO2 and H2O are by-products of the reaction.To utilize the higher activity of lanthanum oxide and save its usage,MgO supported La2O3 catalyst was prepared.Surface modification of the catalyst with nitric acid was made to suppress the formation of the by-products.Experimental results indicated that the addition of nitric acid increased the surface oxygen species with binding energy of ca.531.7 eV and at the same time reduced the pore volume of the catalyst.These effects of nitric acid finally led to the increase of C2 selectivity and the decrease of the by-products formation.Hydrogen selectivity was found about 14%-18% over the catalysts adopted in this work.
文摘In recent years,magnesium(Mg)has evolved as a salient material,in affiliation with electroless nickel(Ni)coating,which have found applications in automobiles,aerospace and confederate fields attributing to its excellent inherent weight sensitive properties.However,being acknowledged for its remarkable auxiliary properties like flexible machining,appreciable weight sensitivity and ability to be patently diecast into mesh constructs,magnesium is prejudiced by aeronautical standards predominantly for its inferior corrosion resistance properties.In this sense,electroless nickel plating on magnesium and its alloys has been suggested to extricate it from corrosion problem and make it more competitive in industrial and defence applications.Autocatalytic fixation of metal ions onto respective substrates accrues and alters their mechanical,electrochemical and tribological properties,destitute of any electric current aid.This proficiently identified technique is prosecuted with the assistance of a series of sequenced operations involving a prior pretreatment,which corresponds to the chemical cleaning of the substrate surface;electroless coating;and a later activation process which is a mild etching of the electroless coated surface.The susceptibility of magnesium to this methodology has advanced and propagated its exercise and applicability in aircraft,satellites and allied aeronautical fields.Contemporarily,researchers have proposed various eco-friendly and modified duplex and composite coatings which have transmuted properties of these appendages by tailoring alloy compositions and reagents employed.This review article systematically colligates various considerations and evaluations on electroless nickel applications of magnesium and its alloys and explicates how it anchors its practice in the respective domains.Furthermore,a comprehensive analysis is devised based on the pre-existing treatment methods for accomplishing the same.
文摘Four perovskite-type complex oxides (LaNiO_3, La_2NiO_4, LaCoO_3 andLa_2CoO_4) were successfully prepared using two sol-gel methods, the Pechini method (PC) and thecitric acid complexing method (CC). The catalysts were characterized by XRD and TPR. Afterreduction, the activity of the catalysts in the CO_2 reforming of methane was tested. Ni-basedcatalysts from La_2NiO_4 precursors were the most active and stable catalyst after calcination above850 ℃, which gave a methane conversion of 0.025 mmol/(g·s) for those prepared by the PC methodand 0.020 mmol/(g·s) by the CC method. It was proposed that the well-defined structure and lowerreducibility is responsible for the unusual catalytic behavior observed over the pre-reducedLa2NiO_4 catalyst.
基金supported by the National Key Research and Development program of China(2021YFA1500503)the National Natural Science Foundation of China(21961142006,21972135)CAS Project for Young Scientists in Basic Research(YSBR-022).
文摘Oxidative dehydrogenation of propane has been an ever-growing field for propylene production due to its exothermic properties,of which overoxidation is the major drawback,with CO and even CO_(2) as undesired by-products.For the purpose of getting higher propylene selectivity as well as yield,herein,we report Ni single atoms supported on calcium aluminate as an efficient catalyst candidate for propane oxidative dehydrogenation.Beneficial from higher valence states of Ni1 species,it shows 2—3 times as much propylene selectivity as that of Ni nanoparticles.About 14.2%C_(3)H_(6) yield with 47.3%propylene selectivity has been achieved on Ni single atom catalyst and a good stability during 20 h test can be obtained as well.
文摘A novel K2O and La2O3 promoted nickel catalyst supported on a-Al2O3 was prepared by co-impregnation method, and it exhibited higher activity and 6-aminocapronitrile selectivity than Ni/a-Al2O3 during the hydrogenation of adiponitrile in the absence of ammonia, i.e., K2O and La2O3 improved the performance of the nickel-based catalyst.
基金supported by University of Kashan(Grant No.158426/29)
文摘Nanostructured -y-A12O3 with high surface area and mesoporous structure was synthesized by sol-gel method and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by XRD, N2 adsorption-desorption, TPR, TPO, TPH, NH3-TPD and SEM techniques. The BET analysis showed a high surface area of 204 m2.g-1 and a narrow pore-size distribution centered at a diameter of 5.5 nm for catalyst support. The BET results revealed that addition of lanthanum oxide to aluminum oxide decreased the specific surface area. In addition, TPR results showed that addition of lanthanum oxide increased the reducibility of nickel catalyst. The catalytic evaluation results showed an increase in methane conversion with increasing lanthanum oxide to 3 mol% and further increase in lanthanum content decreased the catalytic activity. TPO analysis revealed that the coke deposition decreased with increasing lanthanum oxide to 3 mol%. SEM and TPH analyses confirmed the formation of whisker type carbon over the spent catalysts. Addition of steam and Oxide to drv reformin feed increased the methane conversion and led to carbon free ooeration in combined orocesses.