The issues of acid mine drainage (AMD) and heavy metals contamination in the metal sulfide mine in the add district were explored, through studying the acidification and the heavy metals distribution and evolution o...The issues of acid mine drainage (AMD) and heavy metals contamination in the metal sulfide mine in the add district were explored, through studying the acidification and the heavy metals distribution and evolution of groundwater in the black swan (BS) nickel sulfide mine (Western Australia). The groundwater samples were collected from the drilling holes situated in the vicinity of tailings storage facility (TSF) and in the background of the mine (away from TSF), respectively, and the pH and electric conductivity (Ec) were measured in site and the metal contents were analysed by ICP-MS and ICP-AES, quarterly in one hydrological year. The results disclose that the TSF groundwater is remarkably acidified (.pHmean=5, pHmin=3), and the average contents of heavy metals (Co, Cu, Zn, Cd) and Al, Mn are of 1-2 orders of magnitude higher in TSF groundwater than in background groundwater. It may be due to the percolation of tailings waste water from miU process, which leads the tailings to oxidize and the deep groundwater to acidify and contaminate with heavy metals. Besides, the heavy metals concentration in groundwater may be controlled by pH mainly.展开更多
基金Projects(40972220,40873030) supported by the National Natural Science Foundation of ChinaProject(0991024) supported by the Special Project for Applied Basic Research of Guangxi,China
文摘The issues of acid mine drainage (AMD) and heavy metals contamination in the metal sulfide mine in the add district were explored, through studying the acidification and the heavy metals distribution and evolution of groundwater in the black swan (BS) nickel sulfide mine (Western Australia). The groundwater samples were collected from the drilling holes situated in the vicinity of tailings storage facility (TSF) and in the background of the mine (away from TSF), respectively, and the pH and electric conductivity (Ec) were measured in site and the metal contents were analysed by ICP-MS and ICP-AES, quarterly in one hydrological year. The results disclose that the TSF groundwater is remarkably acidified (.pHmean=5, pHmin=3), and the average contents of heavy metals (Co, Cu, Zn, Cd) and Al, Mn are of 1-2 orders of magnitude higher in TSF groundwater than in background groundwater. It may be due to the percolation of tailings waste water from miU process, which leads the tailings to oxidize and the deep groundwater to acidify and contaminate with heavy metals. Besides, the heavy metals concentration in groundwater may be controlled by pH mainly.